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РЕЗЮМЕ. В обзоре обобщены современные данные о роли эктопических рецепторов горького вкуса (TAS2R) 
в патогенезе бронхиальной астмы (БА) в контексте персонализированного подхода к терапии. TAS2R, экспресси-
руемые в эпителии дыхательных путей, гладкой мускулатуре и иммунокомпетентных клетках, участвуют в ключе-
вых звеньях воспалительного процесса и регуляции бронхиального тонуса. Активация TAS2R приводит к 
релаксации гладкой мускулатуры дыхательных путей через сигнальные каскады, независимые от β

2
-адренорецеп-

торов и цАМФ, что обеспечивает эффективность в условиях сниженной чувствительности к β
2
-агонистам. В Т2-

высоком эндотипе БА TAS2R подавляют интерлейкины (ИЛ)-4, ИЛ-5, ИЛ-13, снижая эозинофильное воспаление 
и дегрануляцию тучных клеток. В не-Т2-вариантах БА рецепторы ингибируют провоспалительные медиаторы 
(ИЛ-17, ИЛ-8, фактора некроза опухоли α), уменьшают активность нейтрофилов и макрофагов. TAS2R рассмат-
риваются как перспективные фармакологические мишени, особенно в трудно контролируемых формах астмы, ре-
зистентных к ингаляционным глюкокортикостероидам. В научной литературе упоминаются исследования 
препаратов, которые обладают агонистической активностью в отношении TAS2R, и ведутся поиски эндогенных 
агонистов рецепторов. Представленный материал подчёркивает необходимость дальнейших исследований, на-
правленных на уточнение молекулярных механизмов действия TAS2R, перспективы применения TAS2R-ориен-
тированной терапии при различных эндотипах БА, оценку клинической эффективности и безопасности 
терапевтических агентов, направленных на персонализацию лечения БА на основе изучения генетических и функ-
циональных особенностей этих рецепторов. 

Ключевые слова: TAS2R, бронхиальная астма, гладкомышечные клетки дыхательных путей, иммуномодуляция, 
эпителиальный барьер, цитокины, персонализированная терапия.  

BITTER TASTE RECEPTORS TAS2R AS PROMISING TARGETS IN PERSONALISED 
THERAPY OF ASTHMA  
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SUMMARY. This review summarises current data on the role of ectopic bitter-taste receptors (TAS2R) in the patho-

genesis of asthma within a personalised-therapy framework. TAS2R expressed in airway epithelium, airway smooth-
muscle cells and immunocompetent cells participate in key inflammatory pathways and regulate bronchial tone. Receptor 
activation induces airway smooth-muscle relaxation through signalling cascades that are independent of β

2
-adrenergic re-

ceptors and cAMP, maintaining efficacy when β
2
-agonist sensitivity is reduced. In the T2-high endotype, TAS2R suppress 

IL-4, IL-5 and IL-13, thereby attenuating eosinophilic inflammation and mast-cell degranulation. In non-T2 asthma, TAS2R 
inhibit pro-inflammatory mediators (IL-17, IL-8/CXCL8, TNF-α) and curb neutrophil and macrophage activity. Con-
sequently, TAS2R are viewed as promising pharmacological targets, particularly for difficult-to-control asthma resistant 
to inhaled glucocorticosteroids. The literature already cites compounds with TAS2R-agonist activity, and the search for 
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novel endogenous agonists is ongoing. The evidence underscores the need for further studies to clarify TAS2R molecular 
mechanisms, evaluate TAS2R-oriented therapy across asthma endotypes, and assess the clinical efficacy and safety of 
agents designed to personalise treatment based on the genetic and functional characteristics of these receptors.  

Key words: TAS2R, asthma, airway smooth-muscle cells, immunomodulation, epithelial barrier, cytokines, personalised 
therapy.

От клинических фенотипов к иммунологическим 
эндотипам: эволюция понимания гетерогенности 

бронхиальной астмы  
Бронхиальная астма (БА) представляет собой одно 

из наиболее распространённых хронических воспали-
тельных заболеваний дыхательных путей, встречаю-
щееся в различных возрастных группах, включая как 
детское, так и взрослое население. На сегодняшний 
день БА рассматривается как гетерогенное заболева-
ние, характеризующееся разнообразием клинических 
фенотипов и патофизиологических механизмов [1]. 
Пусковыми факторами его обострения, как правило, 
выступают различные внешние и внутренние триг-
геры, включая воздействие аллергенов, психоэмоцио-
нальный стресс, физическую нагрузку, а также влияние 
загрязняющих веществ природного, техногенного и 
бытового происхождения [2]. Указанные триггеры ин-
дуцируют каскад воспалительных реакций, степень 
выраженности и характер которых определяются ин-
дивидуальной предрасположенностью пациента и 
типом иммунного ответа. 

Помимо типичных респираторных проявлений, 
значительная часть пациентов с БА испытывают си-
стемные симптомы, выражающиеся в ограничении фи-
зической активности, повышенной утомляемости и 
общем снижении качества жизни [3]. Следует отме-
тить, что эти жалобы нередко коррелируют с тяжёлым 
течением заболевания либо его неконтролируемыми 
формами, и тем самым служат дополнительными мар-
керами неблагоприятного прогноза. 

Гетерогенность БА легла в основу концепции фено-
типирования заболевания, в рамках которой была пред-
принята попытка систематизировать пациентов по 
совокупности клинических и функциональных харак-
теристик, а также клеточно-молекулярных механизмов, 
лежащих в основе формирования и течения БА. Наи-
более близко к современному пониманию фенотипов 
БА приблизился Г.Б. Федосеев, который в 1982 г. пред-
ставил 10 клинико-патогенетических вариантов БА [4]. 
В настоящее время предлагается классификация, вклю-
чающая шесть фенотипов [1]: (1) аллергическая БА; (2) 
неаллергическая форма; (3) БА с поздним дебютом; (4) 
БА с фиксированной обструкцией дыхательных путей; 
(5) астма, ассоциированная с ожирением; (6) астма с 
преобладанием кашля (кашлевая астма) [5]. Очевидно, 
что предложенное деление носит операционально-при-
кладной характер и не отражает всей полноты патоге-
нетических различий между фенотипами [6]. В 
результате этого усилился интерес к эндотипированию 
БА – концепции, предполагающей выделение подтипов 
заболевания на основании характерных иммунологи-

ческих и молекулярных механизмов [7]. 
На сегодняшний день ключевым является разделе-

ние на два основных эндотипа: Т2-ассоциированную 
астму (или T2-высокую) и не-Т2-ассоциированную 
форму (T2-низкую) [8]. Эндотип T2-ассоциированной 
БА характеризуется преобладанием эозинофильного 
воспаления, опосредованного интерлейкинами (ИЛ)-4, 
ИЛ-5 и ИЛ-13, он может быть по клиническому про-
филю, как аллергическим, так и неаллергическим [1]. 
Диагностическими маркерами данного эндотипа слу-
жат повышение уровня эозинофилов в периферической 
крови (≥150 клеток/мкл) и/или увеличение фракции ок-
сида азота в выдыхаемом воздухе (FeNO ≥25 ppb). Эти 
показатели, несмотря на определённые ограничения, 
получили признание в ряде клинических рекоменда-
ций как ориентиры для подбора и назначения таргет-
ной терапии [9]. В противоположность этому, 
не-Т2-ассоциированная БА объединяет патофизиоло-
гически менее однородные формы заболевания, где 
преобладает нейтрофильный или малогранулоцитар-
ный воспалительный ответ, часто устойчивый к инга-
ляционным кортикостероидам. Патогенез этих форм 
остаётся недостаточно изученным и, вероятно, вовле-
кает иные сигнальные пути, включая активацию врож-
дённого иммунитета и цитокины ИЛ-6, ИЛ-8 и ИЛ-17 
[10]. 

Эндотипический подход лежит в основе персона-
лизированной терапии бронхиальной астмы, позволяя 
прогнозировать эффективность лечения, особенно био-
логическими препаратами, и избегать неоправданного 
назначения дорогостоящих средств [11].  

Перспективы применения рецепторов TAS2R в 
персонализированной терапии бронхиальной 

астмы  
Несмотря на значительный прогресс в терапии 

астмы, существующие подходы не всегда обеспечи-
вают должный уровень контроля заболевания, осо-
бенно при не-Т2-ассоциированном воспалении. 
Поэтому приоритетом становится выявление и изуче-
ние новых рецепторных систем и молекулярных путей, 
способных расширить арсенал терапевтических стра-
тегий. Одной из таких перспективных мишеней яв-
ляются внеклеточные рецепторы горького вкуса 
(TAS2R), активно экспрессируемые, в том числе, в ды-
хательных путях [12]. Их активация сопровождается не 
только запуском поведенческих защитных реакций (на-
пример, кашель, чихание, сплевывание и т.д.) [13], но 
и модуляцией мукоцилиарного клиренса [14], релакса-
цией гладкой мускулатуры бронхов [15], а также имму-
норегуляторными эффектами [16], включая подавление 
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синтеза провоспалительных медиаторов [17].  
Примечательно, что в доклинических моделях аго-

нисты TAS2R, такие как хлорохин, демонстрировали 
более выраженное бронходилатирующее действие по 
сравнению с β

2
-агонистом изопротеренолом, что поз-

воляет рассматривать TAS2R как перспективные ми-
шени для таргетной терапии хронических 
обструктивных воспалительных заболеваний дыха-
тельных путей [18]. Кроме того, подтверждено, что 
TAS2R5 не подвергается быстрой десенситизации, по-
этому делает его потенциальной мишенью для препа-
ратов с устойчивым бронходилатирующим эффектом 
[19]. 

Целью настоящего обзора является обобщение и 
критический анализ актуальных данных о вовлечённо-
сти рецепторов горького вкуса TAS2R в патогенез раз-
личных эндотипов бронхиальной астмы. Особое 
внимание уделено вопросам эктопической экспрессии 
данных рецепторов в пределах системы органов дыха-
ния, их взаимодействию с ключевыми звеньями им-
мунного ответа, а также перспективам применения 
полученных знаний в рамках персонализированного 
подхода к терапии гетерогенных форм заболевания. 
Рассматриваются потенциальные направления даль-
нейших исследований, включая уточнение молекуляр-
ных мишеней с разработкой новых стратегий 
фармакологического воздействия.  
Структура, классификация рецепторов горького 

вкуса TAS2R  
TAS2R относятся к трансмембранным рецепторам, 

сопряженным с G-белком (GPCR). TAS2R состоят из 
гидрофобной трансмембранной области, короткого 
внеклеточного амино-конца, внутриклеточного карбок-
сильного конца, трех внеклеточных петель и трех меж-
клеточных петель. У людей было идентифицировано 
двадцать пять различных подтипов TAS2R (hTAS2R) 
[20], включая TAS2R1, -3, -4, -5, -7, -8, -9, -10, -13, -14, 
-16, -19, -20, -30, -31, -38, -39, -40, -41, -42, -43, -45, -

46, -50 и -60. Гены, кодирующие TAS2R, сосредо-
точены на хромосомах 5p15, 7q31, и 12p13. Следует от-
метить, что TAS2R2, кодируемый одним из 
псевдогенов, в настоящее время считается 26-м функ-
циональным рецептором горького вкуса человека в не-
которых популяциях [21]. Номера hTAS2R были 
закреплены за всеми обнаруженными членами семей-
ства при первоначальной аннотации; пропущенные по-
зиции (например, TAS2R6, 11, 12) обозначают 
локусы-псевдогены, утратившие функцию у человека, 
но сохранённые в других млекопитающих [22].  

Рецепторы TAS2R выделены в самостоятельный T-
класс GPCR на основании ряда молекулярно-генетиче-
ских и структурных признаков [23]. Их 
аминокислотная последовательность демонстрирует 
менее 20% идентичности с другими представителями 
суперсемейства GPCR, при этом TAS2R лишены кон-
сервативных доменов DRY и NPxxY, характерных для 
классических представителей рецепторной группы. 
Согласно данным филогенетического анализа, рецеп-
торы TAS2R формируют изолированную ветвь, что 
подтверждает их обособленное эволюционное про-
исхождение и функциональную специфику [24]. 

Представленный рисунок схематично иллюстри-
рует наиболее часто описанные изоформы рецепторов 
TAS2R, экспрессируемые различными клетками дыха-
тельной системы. Гладкомышечные клетки преимуще-
ственно экспрессируют TAS2R5, -10, -14, -31 [12]; 
эпителиальные – TAS2R4, -14, -16, -38, -46 [25]. У им-
мунокомпетентных клеток профиль экспрессии варь-
ирует: нейтрофилы – TAS2R38 [26], макрофаги — 
TAS2R4, -14, -38, -46 [27], тучные клетки – TAS2R3, -
4, -10, -14, -46 [28], а лимфоциты обладают наиболь-
шим разнообразием — TAS2R4, -5, -10, -13, -14, -19, 
-20 [29]. Следует учитывать, что представленный про-
филь экспрессии не является исчерпывающим для каж-
дой клеточной популяции и отражает те изоформы, 
которые наиболее часто упоминаются в доступных ис-
следованиях.

Рис. Клеточная экспрессия различных изоформ рецепторов горького вкуса TAS2R в дыхательных путях чело-
века.
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Сигнальные пути рецепторов горького вкуса 
TAS2R  

Связь между горькими соединениями и рецепто-
рами TAS2R отличается высокой степенью сложности 
и поливалентности. Известны десятки тысяч горьких 
соединений различного происхождения и химической 
структуры, включая растительные, синтетические и 
бактериальные компоненты. Несмотря на наличие 
определённой специфичности, характерна выраженная 
двусторонняя избирательность: один и тот же рецептор 
способен реагировать на широкий спектр химически 
не родственных веществ, в то время как отдельные 
горькие соединения активируют несколько различных 
изоформ рецепторов, например, такие как TAS2R10, 
TAS2R14, и TAS2R46 [28]. Дополнительный интерес 
представляют вещества, проявляющие двойственную 
фармакологическую активность [30]. Так, например, 
цикламат – синтетический подсластитель с характер-
ным горьким послевкусием – может одновременно вы-
ступать как агонист, так и антагонист TAS2R в 
зависимости от условий взаимодействия [31]. 

Активация рецепторов TAS2R осуществляется 
через несколько сигнальных путей, сопряжённых с G-
белками, сопровождаясь быстрыми изменениями кон-
центраций вторичных мессенджеров. Один из 
механизмов включает связывание горьких лигандов 
(например, циклогексимида) с рецептором, что приво-
дит к активации α-субъединицы G-белка, снижающей 
уровень внутриклеточного цАМФ за счёт стимуляции 
фосфодиэстеразы. В результате инактивируются 
цАМФ-зависимые ионные каналы, что вызывает вы-
свобождение Ca2+ из внутриклеточных депо, повыше-
ние его цитозольной концентрации и последующую 
деполяризацию мембраны [32]. Описанный механизм 
характерен для некоторых эффектов TAS2R, например, 
таким образом реализуется классический путь вос-
приятия горечи, но не для гладкомышечных клеток ды-
хательных путей (ГМК ДП). 

Кроме того, установлено, что некоторые вещества 
(например, хинин) способны блокировать калиевые ка-
налы, индуцируя деполяризацию клеток, экспресси-
рующих TAS2R. Наряду с этим, активация G-белков и 
1-фосфатидилинозитол-4,5-бисфосфатфосфодиэсте-
разы бета-2 (PLCβ

2
) приводит к увеличению концент-

рации внутриклеточного кальция и активации 
катионных каналов TRPM4 и TRPM5, что сопровож-
дается поступлением ионов натрия и усилением депо-
ляризационного сигнала [33]. Интерпретация 
физиологических последствий стимуляции TAS2R тре-
бует учета тканевой специфичности их сигнальных 
каскадов, поэтому эти данные не могут быть напрямую 
экстраполированы на ГМК ДП. 

Альтернативный путь реализуется через активацию 
βγ-комплекса G-белка, где его активация индуцирует 
PLCβ

2
-зависимый синтез инозитол-1,4,5-трифосфата 

(IP3) и диацилглицерина. IP3 связывается со своими 

рецепторами (IP3R), что мобилизует ионы кальция из 
эндоплазматического ретикулума. Повышение уровня 
внутриклеточного Ca2+ приводит к деполяризации кле-
ток через TRPM5 и секреции нейротрансмиттеров [34]. 
Описанный механизм характерен для париетальных 
клеток желудка человека, но не подтвержден для глад-
комышечных клеток бронхов. 

Таким образом, одни и те же горькие соединения 
способны активировать несколько сигнальных каска-
дов, как независимых, так и частично совпадающих, 
что свидетельствует о высоком уровне регуляторной 
сложности, характерной для TAS2R-опосредованной 
передачи сигнала в различных тканях. 

Активация TAS2R в ГМК ДП сопровождается вы-
раженным бронходилатирующим эффектом: в экспери-
ментах на изолированной ГМК ДП in vitro было 
показано, что агонисты TAS2R вызывают релаксацию 
в 3 раза более выраженную по сравнению с β

2
-адрено-

миметиками, при этом их действие реализуется вне за-
висимости от уровней внутриклеточного цАМФ [35]. 
Активация TAS2R в ГМК ДП опосредует расслабление 
через каскад, включающий активацию Gβγ-субъединиц 
гетеротримерных G-белков, стимуляцию PLCβ

2
, моби-

лизацию внутриклеточного кальция и преимуществен-
ную активацию Ca2+-зависимых калиевых каналов, что 
вызывает гиперполяризацию мембраны. Этот гипер-
поляризующий ответ доминирует над сопутствующей 
TRPM5-индуцированной деполяризацией, приводя к 
устойчивой релаксации гладкой мускулатуры бронхов 
[25].  

Активация TAS2R как стратегия модуляции Т2-
ассоциированного воспаления при БА  

Первые экспериментальные данные, свидетель-
ствующие о терапевтическом потенциале TAS2R, были 
получены на крысиных моделях, где было установ-
лено, что хлорохин способен снижать уровень гиста-
мина в лёгочной ткани [37]. На текущий момент 
накопленные сведения мировой научной литературы 
позволяют подойти к анализу участия TAS2R в патоге-
незе различных эндотипов БА. 

Ключевое звено Т2-опосредованного иммунного 
ответа представлено Т-хелперами II типа, продуцирую-
щими сигнальные молекулы ИЛ-4, ИЛ-5 и ИЛ-13, ко-
торые активируют как врождённые, так и адаптивные 
эффекторные клетки. Согласно полученным данным, 
экспрессия TAS2R на циркулирующих Т-лимфоцитах 
человека демонстрирует чёткую зависимость от цито-
кинового окружения. В частности, в культуре клеток 
под действием ИЛ-4, ИЛ-5 и ИЛ-13 отмечается дозо-
зависимое увеличение транскрипции TAS2R [38, 39]. 
Результаты C.Orsmark-Pietras et al., подтверждают им-
муномодулирующие свойства TAS2R: их агонисты по-
давляют липополисахарид-индуцированное 
высвобождение целого ряда провоспалительных цито-
кинов, включая ИЛ-4, ИЛ-5, ИЛ-10 и ИЛ-13 [40].  

Также имеются данные о влиянии различных аго-
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нистов TAS2R на пролиферативную активность эпите-
лиальных клеток дыхательных путей. Среди исследуе-
мых соединений фигурировали апигенин, гесперетин, 
кемпферол, нарингенин, кверцетин и нарингин. Уста-
новлено, что в течение 48 часов все указанные агони-
сты, за исключением нарингина, вызывали 
достоверное снижение темпов клеточной пролифера-
ции [41]. Другие исследования подтверждают данные 
эффекты в отношении эпителиальных клеток, осо-
бенно не дифференцированных форм, что может ука-
зывать на потенциальное участие TAS2R в контроле 
процессов гиперплазии при БА [42]. Эпителий дыха-
тельных путей доступен для прямого воздействия аго-
нистами TAS2R, доставляемыми в легкие с помощью 
ингалятора или небулайзера. Особый интерес пред-
ставляют данные о том, что горькие агонисты, в част-
ности, алоин и папаверин, ингибируют пролиферацию 
гладкомышечных клеток [35], вероятно, посредством 
снижения активности киназ, регулируемых внеклеточ-
ными сигналами – ERK (extracellular signal-regulated ki-
nase) 1 и ERK2. 

Ряд экспериментальных работ, выполненных на 
мышиных моделях, демонстрирует, что ингаляцион-
ные агонисты TAS2R (хлорохин, хинин) достоверно 
снижают эозинофильную инфильтрацию лёгких и по-
давляют продукцию цитокинов Т2-ассоциированной 
БА (ИЛ-4, ИЛ-5, ИЛ-13) [43], при этом клинические 
данные свидетельствуют о корреляции между уровнем 
экспрессии TAS2R и биомаркерами тяжести БА (FeNO, 
периостин) во всех возрастных группах [40], а актива-
ция специфических изоформ TAS2R (TAS2R4, 
TAS2R14, TAS2R16, TAS2R40) на макрофагах усили-
вает фагоцитоз и индуцирует синтез NO, продукция ко-
торого напрямую связана с их стимулированием [36]. 

При эозинофильном фенотипе БА уровень периос-
тина, индуцируемого ИЛ-4 и ИЛ-13, существенно пре-
вышает таковой у пациентов с минимальной 
воспалительной активностью. Хотя прямое участие 
TAS2R в регуляции продукции периостина не подтвер-
ждено, предполагается косвенное воздействие через 
ИЛ-4/ИЛ-13-зависимые механизмы [44]. Дополнитель-
ный вклад может вносить локальный синтез периос-
тина клетками гладкой мускулатуры дыхательных 
путей [45]. В совокупности эти данные позволяют об-
основанно рассматривать возможность корреляции 
между уровнем экспрессии TAS2R и концентрацией 
периостина, аналогично наблюдаемым связям с дру-
гими маркерами Т2-воспаления. 

Иммуноглобулин E (IgE) остаётся ключевым мар-
кером атопии и Т2-опосредованных реакций. Установ-
лено, что тучные клетки, экспрессирующие до 9 
различных TAS2R, характеризуются снижением IgE-
опосредованной дегрануляции и выброса гистамина в 
ответ на активацию этих рецепторов такими веще-
ствами как: хлорохин и денатониум [46]. Более того до-
казано, наличие полиморфизма rs61912291 в гене 
TAS2R20 достоверно ассоциировано с повышенным 

уровнем общего IgE (>100 МЕ/мл) у больных БА, что 
свидетельствует о возможной генетически детермини-
рованной регуляции гуморального компонента иммун-
ного ответа [47]. Тем не менее, необходимо учитывать, 
что эозинофильное воспаление в дыхательных путях 
может протекать независимо от уровня IgE, о чём, в 
частности, свидетельствует эффективность терапии 
моноклональными антителами к рецептору ИЛ-5Rα 
(например, бенрализумабом) [48]. 

Таким образом, активация рецепторов TAS2R при 
эндотипе Т2-ассоциированной БА демонстрирует 
значительный терапевтический потенциал, включая 
снижение эозинофильного воспаления, подавление 
ключевых Т2-цитокинов, уменьшение секреции IgE и 
гистамина, ингибирование пролиферации клеток эпи-
телия и гладкой мускулатуры, а также усиление анти-
микробной активности макрофагов и продукции NO. 
Эти эффекты способствуют поддержанию контроля 
над БА. Снижение функции или экспрессии TAS2R, на-
пример, из-за генетических полиморфизмов, напротив, 
ухудшает клинические исходы и может приводить к 
повышенному уровню воспаления и выраженности 
симптомов, что подчёркивает необходимость персони-
фицированного подхода к использованию TAS2R-аго-
нистов. 

При этом накапливаются данные, что TAS2R могут 
быть задействованы не только в Т2-ассоциированной 
БА, но и участвовать в патогенезе не-Т2-ассоциирован-
ной БА, включая механизмы формирования нейтро-
фильного или малогранулоцитарного воспалительного 
ответа.  

Активация TAS2R как стратегия модуляции  
не-Т2-ассоциированном воспаления при БА  
Астма с низкой активностью Т2-воспаления тради-

ционно классифицируется на основании цитологиче-
ских характеристик индуцированной мокроты, при 
этом основными фенотипами выступают нейтрофиль-
ный и малогранулоцитарный варианты. Для нейтро-
фильного подтипа характерно увеличение доли 
нейтрофилов в мокроте до 40-76 %, что отражает ак-
тивацию воспалительных каскадов, опосредованных 
клетками врождённого иммунитета; для малогрануло-
цитарного подтипа – низкое количество гранулоцитов 
(нейтрофилов и эозинофилов) в мокроте [49]. 

Эндотип не-Т2-ассоциированной астмы тесно ассо-
циирован с продукцией ИЛ-17, основного цитокина, 
ответственного за рекрутирование нейтрофилов в 
ткани. Имеющиеся данные свидетельствуют о том, что 
активация рецепторов TAS2R способна подавлять про-
дукцию ИЛ-17, ИЛ-1β и ИЛ-6 макрофагами лёгочной 
ткани [50], указывая на иммуномодулирующий потен-
циал TAS2R в условиях Т2-независимого воспаления 
[51].   

Рецепторы TAS2R определяются как на нейтрофи-
лах, так и на макрофагах, однако профиль экспрессии 
данных рецепторов демонстрирует клеточную специ-
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фичность [27]. Так, на нейтрофилах экспрессируется 
большинство подтипов, типичных также для Т-лимфо-
цитов, тогда как на макрофагах, согласно транскрип-
томным данным, не экспрессируются TAS2R1, 
TAS2R13, TAS2R16, TAS2R30, TAS2R40, TAS2R41 и 
TAS2R42. Эта различная представленность может от-
ражать функциональную специализацию рецепторов в 
зависимости от иммунной ниши. Кроме того, агонисты 
TAS2R эффективно ингибируют синтез фактора нек-
роза опухоли (TNF)-α – цитокина, рассматриваемого в 
качестве биомаркера не-Т2-ассоциированной астмы, а 
также хемокинов CXCL8 (хемокин с мотивом C-X-C 
лиганд 8, ИЛ-8) и CCL3 (также известный как MIP-1α 
(macrophage inflammatory protein 1-alpha)), вовлечён-
ных в активацию и миграцию нейтрофилов и моноци-
тов [29]. Отдельные работы показали достоверную 
обратную корреляцию между экспрессией TAS2R5 и 
уровнем ИЛ-6, что может отражать участие данного ре-
цептора в негативной регуляции провоспалительных 
процессов [50]. Кроме того, в эксперименте активация 
TAS2R1, -4, -39, -43, -46, -47 и -50 подавляет продук-
цию TNF-α [52, 53]. 

Экспрессия TAS2R на нейтрофилах позволяет им 
взаимодействовать с бактериальными аутоиндукто-
рами [54], такими как N-ацил-гомосерин-лактоны и 
производные хинолина [36], используемыми в систе-
мах кворум-сенсинга грамотрицательных бактерий. В 
частности, TAS2R38 был идентифицирован в качестве 
рецептора, чувствительного к таким молекулам, что 
подтверждено в экспериментах с участием Pseudo-
monas aeruginosa – типичного оппортунистического 
патогена, ассоциированного с тяжёлыми формами хро-
нических респираторных заболеваний [55]. Активация 
T2R38 на нейтрофилах приводила к росту экспрессии 
α-субъединицы β

2
-интегрина (αmβ

2
) и усилению фаго-

цитоза, а значит рецептор выполняет не только сенсор-
ную, но и иммунорегуляторную роль при контакте с P. 
aeruginosa [54]. 

Функциональная значимость TAS2R38 также под-
тверждена результатами, полученными на хемосенсор-
ных клетках верхних дыхательных путей человека, где 
его активация сопровождалась усиленной продукцией 
антимикробных пептидов и стимулированием врож-
дённого иммунного ответа [56]. Активация TAS2R спе-
цифическими агонистами (арбутином) достоверно 
усиливает хемотаксис нейтрофилов in vitro на мыши-
ных моделях [57], что указывает на участие TAS2R в 
регуляции первичного выхода нейтрофилов.  

Таким образом, активация рецепторов TAS2R в не-
Т2-ассоциированной астме дозозависимо подавляет 
продукцию ключевых провоспалительных цитокинов 
и хемокинов, одновременно усиливая фагоцитарную 
активность, экспрессию CD11b и хемотаксис нейтро-
филов, что предполагает значимый иммуномодули-
рующий потенциал TAS2R в условиях 
Т2-независимого воспалительного ответа. 

Особое значение в формировании не-Т2-ассоции-

рованной БА придаётся воздействию табачного дыма, 
который, в эксперименте на вкусовом эпителии in vitro, 
приводит к снижению экспрессии TAS2R7, -9, -30, -38 
и -45 [58]. Гипофункция или сниженная экспрессия 
TAS2R может способствовать хроническому течению 
воспалительного процесса и персистенции инфекцион-
ных агентов при респираторных патологиях. Дополни-
тельным фактором риска является наличие генотипа 
AVI/AVI рецептора TAS2R38, ассоциированного с по-
ниженной чувствительностью к горьким стимулам 
[59]. У носителей данной аллельной комбинации ста-
тистически выше распространённость табачной зави-
симости и, как следствие, больший вклад курения в 
развитие хронической патологии дыхательных путей 
[60]. Эти наблюдения подчёркивают необходимость 
дальнейшего изучения роли TAS2R в патогенезе не-Т2-
ассоциированной БА, особенно на фоне вредных пове-
денческих факторов. 

Участие TAS2R в патогенезе не-Т2-ассоциирован-
ной БА приобретает дополнительную практическую 
значимость для варианта течения БА на фоне ожире-
ния. Генетические вариации в генах TAS2R также ассо-
циированы с параметрами метаболизма и пищевого 
поведения, что подтверждается рядом популяционных 
исследований [61]. Ожирение является значимым ко-
морбидным фактором бронхиальной астмы, изменяя 
характер воспаления и снижая эффективность ингаля-
ционной глюкокортикостероидной (иГКС) терапии 
[62]. Увеличение индекса массы тела сопровождается 
ростом уровня TNF-α и уменьшает чувствительность 
к иГКС. Адипоциты, активно секретируя лептин, спо-
собствуют развитию неаллергического воспаления 
[63]. TAS2R38, экспрессия которого в адипозной ткани 
повышена при ожирении, вовлечён в регуляцию про-
цессов адипогенеза и делипидизации клеток. Макро-
фаги и тучные клетки, также экспрессирующие TAS2R 
[64], дополнительно поддерживают хроническое вос-
паление, типичное для ожирения. Таким образом, ре-
цепторы TAS2R, особенно TAS2R38, могут выступать 
связующим звеном между ожирением и не-Т2-ассо-
циированной бронхиальной астмой, модулируя мета-
болические и воспалительные процессы и влияя на 
эффективность терапии. 

Среди эндотипа не-Т2-ассоциированной БА иссле-
дователи выделяют также фенотип «астмы в менопау-
зальном периоде», который ассоциируется со 
снижением уровней 17β-эстрадиола и прогестерона 
[65, 66]. Дефицит эстрогенов нарушает модулирующее 
действие гормонов на исходно Th2-адаптированный 
иммунный ответ, что приводит к нейтрофильной ин-
фильтрации дыхательных путей [67]. В этой связи вы-
зывает интерес то, что прогестерон стимулирует в 
яичниках крыс Tas2r114 и Tas2r110 [68], выступая в 
роли эндогенного агониста, как и, предположительно, 
некоторые другие стероидные гормоны и желчные кис-
лоты [69]. Подобно клеткам дыхательного эпителия в 
клетках жёлтого тела активация TAS2R запускает вы-
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работку NO, что повышает уровень циклического гуа-
нозинмонофосфата. Последний, в свою очередь, сни-
жает экспрессию ключевых факторов стероидогенеза 
и подавляет продукцию прогестерона [70]. На основа-
нии вышесказанного можно сформулировать гипотезу, 
что усиленная экспрессия TAS2R в жёлтом теле крыс, 
как и у человека, может повышать системную чувстви-
тельность к колебаниям половых гормонов и является 
фактором риска развития или обострения астмы в ме-
нопаузальном периоде. 

Таким образом, рецепторы TAS2R обладают значи-
тельным терапевтическим потенциалом при не-Т2-ас-
социированной БА благодаря их способности 
модулировать воспалительный ответ. Активация 
TAS2R38 и других подтипов рецепторов подавляет 
продукцию провоспалительных цитокинов (ИЛ-17, 
ИЛ-1β, ИЛ-6, TNF-α), хемокинов (CXCL8, CCL3) и 
стимулирует антимикробную защиту, тем самым улуч-
шая течение нейтрофильного воспаления и снижая 
риск бактериальных осложнений. Гипофункция рецеп-
торов TAS2R, обусловленная генетическими вариа-
циями (например, аллель AVI/AVI для TAS2R38), 
негативными поведенческими факторами (курение), 
может ухудшать течение заболевания и способствовать 
персистенции инфекции. Следовательно, рецепторы 
TAS2R перспективны для использования в диагно-
стике, прогнозировании и целенаправленной терапии 
не-Т2-ассоциированной БА, но требуют учёта индиви-
дуальных генетических и метаболических особенно-
стей пациентов.   

Направления будущих исследований  
TAS2R, изначально известные как вкусовые рецеп-

торы, широко экспрессируются в дыхательных путях 
человеческого организма и на иммунных клетках, обес-
печивая бронходилатацию, модуляцию воспаления, 
контроль клеточной пролиферации и антимикробную 
защиту. Данный факт открывает перспективы персона-
лизированной терапии БА в различных её проявле-
ниях. Однако большинство данных о роли TAS2R в 
патогенезе различных эндотипов астмы опираются на 
косвенные доказательства, что требует дальнейших 
фундаментальных и клинических исследований. Не-
обходимы углублённые исследования молекулярных и 
сигнальных путей активации TAS2R, а также уточне-
ние спектра лигандов и их специфичности, наряду с 
клиническими испытаниями безопасности и эффектив-
ности агонистов и антагонистов. 

Доклинические исследования демонстрируют пре-
имущества TAS2R-агонистов перед традиционными 
препаратами [18]. Комбинация TAS2R-агонистов с кор-
тикостероидами потенцирует подавление воспаления, 
что подтверждено in vitro и in vivo [71]. Традиционная 
китайская медицина издавна практикует применение 
отваров с изобилием горьких трав в качестве инстру-
ментов против астмы [72]. 

Ориентируясь на многообразие благоприятных эф-

фектов активации TAS2R-рецепторов в дыхательных 
путях, можно выдвинуть гипотезу об их участии в са-
ногенетических механизмах, модулирующих течение 
БА. Вместе с тем поиск эндогенных агонистов всех 
подтипов TAS2R остаётся актуальной задачей. На се-
годняшний день главными кандидатами выступают 
желчные кислоты (холевая, таурохолевая, гликохолевая 
и др.), стероидные гормоны, а также бактериальные 
аутоиндукторы – N-ацилгомосерин-лактоны и другие 
компоненты кворум-сенсинга [73]. Дальнейшие иссле-
дования должны быть нацелены на детальную иденти-
фикацию эндогенных лигандов для всех 
функционально активных TAS2R в дыхательных путях 
человека, что позволит окончательно подтвердить роль 
TAS2R в качестве гомеостатических рецепторов собст-
венных метаболитов организма, а не исключительно 
потенциальных пищевых токсинов. 

Репозиционирование препаратов, например, таких 
как хлорохин, флуфенамовая кислота, лидокаин [74] и 
других одобренных лекарственных средств, которые 
обладают агонистической активностью в отношении 
TAS2R с модуляцией полезных эффектов при БА, 
может ускорить их внедрение в клинику. Однако для 
реализации этого потенциала требуется преодоление 
ключевых барьеров, прежде всего, низкой специфич-
ности, которая характерная для агонистов TAS2R. Из-
вестно, что многие лиганды активируют несколько 
подтипов TAS2R, что затрудняет управление побоч-
ными эффектами [28]. В настоящее время проводятся 
доклинические исследования серии 2-аминопирими-
динов, представляющих собой высокопотентные и се-
лективные агонисты TAS2R14, что делает эти 
соединения перспективными кандидатами для разра-
ботки лекарственных средств против БА и хрониче-
ской обструктивной болезни лёгких [75].  

Кроме того, генетическая вариабельность рецепто-
ров TAS2R, в частности полиморфизмы TAS2R38, об-
условливает индивидуальные различия в 
терапевтическом ответе пациентов, что обосновывает 
необходимость персонализированного подхода к под-
бору доз препаратов. Большинство имеющихся данных 
получено на основе экспериментов in vitro или докли-
нических исследований на животных моделях, что соз-
даёт дефицит клинически значимой информации о 
влиянии активации TAS2R на течение заболеваний у 
человека. Для полноценной оценки эффективности, 
безопасности и терапевтического потенциала TAS2R-
агонистов необходимы строго спланированные рандо-
мизированные контролируемые исследования с 
участием пациентов.  

Известной особенностью вкусовых рецепторов, в 
том числе TAS2R, является тахифилаксия – снижение 
их чувствительности при длительной активации, на-
блюдаемое в различных тканях и органах, что 
ограничивает потенциальную возможность их приме-
нения в качестве средств базисной терапии [76].  

Будущие исследования должны быть направлены 
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на разработку селективных агонистов, что может быть 
достигнуто посредством создания лигандов, специфич-
ных к отдельным изоформам рецепторов TAS2R, для 
минимизации нежелательных побочных эффектов. Не-
обходимо продолжить идентификацию эндогенных ли-
гандов и изучение их роли в активации TAS2R в 
различных органах и тканях. Следует также детально 
уточнить механизмы, опосредующие бронходилати-
рующий и противовоспалительный эффекты актива-
ции рецепторов TAS2R, что позволит оптимизировать 
терапевтические стратегии. Интеграция генетических 
данных, в частности анализа полиморфизмов TAS2R, с 
клинической практикой поможет усовершенствовать 
стратификацию пациентов и спрогнозировать индиви-
дуальный ответ на терапию. Особое внимание должно 
быть уделено проведению клинических испытаний, 
оценивающих эффективность комбинированного под-
хода (TAS2R-агонисты в сочетании с кортикостерои-
дами или β2-агонистами) при тяжёлых формах БА.  

Заключение  
Рецепторы горького вкуса представляют собой вы-

сокоперспективную терапевтическую мишень при БА 
благодаря их способности опосредовать бронходила-
тацию и выраженные иммуномодулирующие эффекты, 
актуальные как для Т2-, так и для не-Т2-эндотипов за-
болевания. Однако для реализации этого потенциала 
необходимо преодоление ключевых ограничений: не-
специфичности существующих лигандов, влияния ге-

нетического полиморфизма TAS2R, недостатка клини-
ческих данных и риска возникновения осложнений. Бу-
дущие исследования должны быть сфокусированы на 
детальном изучении молекулярных механизмов и раз-
работке селективных агонистов, с учетом генетиче-
ского тестирования с целью персонализации терапии, 
что может открыть путь для создания новых эффектив-
ных стратегий лечения различных форм БА.  
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