Diagnostics of pulmonary sarcoidosis by the method of computed tomographic densitovolumetry
https://doi.org/10.36604/1998-5029-2022-84-49-62
Abstract
Aim. To develop a new method for quantitative evaluation of digital data of chest CT images of patients with sarcoidosis, to evaluate the diagnostic significance of the obtained quantitative indicators in comparison with functional pulmonary tests.
Materials and methods. Healthy individuals (n=21) and patients with pulmonary sarcoidosis (n=101), divided into 5 groups according to J.G.Scadding classification, were examined. The lung function was assessed according to the data of spirometry, body plethysmography and the study of the lung diffusion capacity. All examined patients underwent a two-stage computed tomography of the lungs in the inspiratory and expiratory phases with the measurement in 3 density ranges.
Results. The values of the obtained quantitative indicators, determined by the new method of CT-densitovolumetry, differed from the control group both in the general group of patients with sarcoidosis and in individual groups according to the J.G.Scadding classification. Correlations were found between radiometric measurements and lung function parameters. In patients with sarcoidosis, a larger volume of poorly ventilated sections was determined in comparison with the healthy group.
Conclusion. The new method of CT-densitovolumetry makes it possible to quantify the entire volume of lung tissue in the area of tomographic coverage, the obtained results can be used as a useful tool in predicting the course of the disease and the response to ongoing therapy.
About the Authors
E. A. Ignat’evaRussian Federation
Elena A. Ignat’eva, MD, Postgraduate Student of the Laboratory of Functional Research of Respiratory System, Roentgenologist
22 Kalinina Str., Blagoveshchensk, 675000, Russian Federation
A. V. Il’in
Russian Federation
Andrey V. Il’in, MD, PhD (Med.), Roentgenologist, Head of Department of X-Ray Diagnostics
22 Kalinina Str., Blagoveshchensk, 675000, Russian Federation
J. M. Perelman
Russian Federation
Juliy M. Perelman, MD, PhD, DSc (Med.), Corresponding member of RAS, Рrofessor, Deputy Director on Scientific Work, Head of Laboratory of Functional Research of Respiratory System
22 Kalinina Str., Blagoveshchensk, 675000, Russian Federation
References
1. Te H.S., Perlman D.M., Shenoy C., Steinberger D.J., Cogswell R.J., Roukoz H., Peterson E.J., Zhang L., Allen T.L., Bhargava M. Clinical characteristics and organ system involvement in sarcoidosis: comparison of the University of Minnesota Cohort with other cohorts. BMC Pulm. Med. 2020; 1(20):155. https://doi.org/10.1186/s12890-020-01191-x
2. Ungprasert P., Ryu J.H., Matteson E.L. Clinical manifestations, diagnosis, and treatment of sarcoidosis. Mayo Clin. Proc. Innov. Qual. Outcomes 2019; 3(3):358–375. https://doi.org/10.1016/j.mayocpiqo.2019.04.006
3. Judson M.A. Environmental risk factors for sarcoidosis. Front. Immunol. 2020; 11:1340. https://doi.org/10.3389/fimmu.2020.01340.
4. Vizel A.A., Vizel I.Yu. [Sarcoidosis: what we know and what we can]. Prakticheskaya pul'monologiya 2018; (1):65–68 (in Russian).
5. Webb W.R. Muller N.L., Naidich D.P. High-Resolution CT of the Lung. 5th ed. Philadelphia: Lippincott Williams and Wilkins; 2015. ISBN: 9781451176018
6. Calandriello L., Walsh S.L.F. Imaging for sarcoidosis. Semin. Respir. Crit. Care Med. 2017; 38:417–436. https://doi.org/10.1055/s-0037-1603765.
7. Scadding J.G. Prognosis of intrathoracic sarcoidosis in England. A review of 136 cases after five years' observation. Br. Med. J. 1961; 2(5261):1165–1172. https://doi.org/10.1136/bmj.2.5261.1165
8. Akira M., Kozuka T., Inoue Y., Sakatani M. Long-term follow-up CT scan evaluation in patients with pulmonary sarcoidosis. Chest 2005; 127(1):185–191. https://doi.org/10.1378/chest.127.1.185
9. Lambin P., Rios-Velazquez E., Leijenaar R., Carvalho S., van Stiphout R.G., Granton P., Zegers C.M., Gillies R., Boellard R., Dekker A., Aerts H.J. Radiomics: extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 2012; 48(4):441–446. https://doi.org/10.1016/j.ejca.2011.11.036
10. Gillies R.J., Kinahan P.E., Hricak H. Radiomics: images are more than pictures, they are data. Radiology 2016; 278(2): 563–577. https://doi.org/10.1148/radiol.2015151169
11. Song J., Yin Y., Wang H., Chang Z., Liu Z., Cui L. A review of original articles published in the emerging field of radiomics. Eur. J. Radiol. 2020; 127:108991. https://doi.org/10.1016/j.ejrad.2020.108991
12. Erdal B.S., Crouser E.D., Yildiz V., King M.A., Patterson A.T., Knopp M.V., Clymer B.D. Quantitative computerized two-point correlation analysis of lung CT scans correlates with pulmonary function in pulmonary sarcoidosis. Chest 2012; 42(6):1589–1597. https://doi.org/10.1378/chest.11-2027
13. Walsh S.L., Wells A.U., Sverzellati N., Keir G.J., Calandriello L., Antoniou K.M., Copley S.J., Devaraj A., Maher T.M., Renzoni E., Nicholson A.G., Hansell D.M. An integrated clinicoradiological staging system for pulmonary sarcoidosis: a case-cohort study. Lancet Respir. Med. 2014; 2(2):123–130. https://doi.org/10.1016/S2213-2600(13)70276-5
14. Urbankowski T., Opoka L., Wojtan P., Krenke R. Assessment of lung involvement in sarcoidosis - the use of an open-source software to quantify data from computed tomography. Sarcoidosis Vasc. Diffuse Lung Dis. 2017; 34(4):315–325. https://doi.org/10.36141/svdld.v34i4.6708
15. Ryan S.M., Fingerlin T.E., Mroz M., Barkes B., Hamzeh N., Maier L.A., Carlson N.E. Radiomic measures from chest high-resolution computed tomography associated with lung function in sarcoidosis. Eur. Respir. J. 2019; 54(2):1900371. https://doi.org/10.1183/13993003.00371-2019
16. Salaffi F., Carotti M., Di Donato E., Di Carlo M., Ceccarelli L., Giuseppetti G. Computer-aided tomographic analysis of interstitial lung disease (ILD) in patients with systemic sclerosis (SSc). Correlation with pulmonary physiologic tests and patient-centred measures of perceived dyspnea and functional disability. PLoS ONE 2016; 11(3):e0149240. https://doi.org/10.1371/journal.pone.0149240
17. Ohkubo H., Kanemitsu Y., Uemura T., Takakuwa O., Takemura M., Maeno K., Ito Y., Oguri T., Kazawa N., Mikami R., Niimi A. Normal lung quantification in usual interstitial pneumonia pattern: the impact of threshold-based volumetric CT analysis for the staging of idiopathic pulmonary fibrosis. PLoS One 2016; 11(3):e0152505. https://doi.org/10.1371/journal.pone.0152505
18. Tanizawa K., Handa T., Nagai S., Hirai T., Kubo T., Oguma T., Ito I., Ito Y., Wayanabe K., Aihara K. Ikezoe K., Oga T., Chin K., Izumi T., Mishima M. Clinical impact of high-attenuation and cystic areas on computed tomography in fibrotic idiopathic interstitial pneumonias. BMC Pulm. Med. 2015; 15:74. https://doi.org/10.1186/s12890-015-0069-0
19. Ash S.Y., Harmouche R., Vallejo D.L.L., Villalba J.A., Ostridge K., Gunville R., Come C.E., Onieva J., Ross J.C., Hunninghake G.M., El-Chemaly S.Y., Doyle T.J., Nardelli P., Sanchez-Ferrero G.V., Goldberg H.J., Rosas I.O., San Jose Estepar R., Washko G.R. Densitometric and local histogram based analysis of computed tomography images in patients with idiopathic pulmonary fibrosis. Respir. Res. 2017; 18(1):45. https://doi.org/10.1186/s12931-017-0527-8
20. Il'in A.V., Lenshin A.V., Odireev A.N., Perelman J.M. [New method of X-ray diagnostics of disturbances of lungs ventilation function by multidetector computed tomography]. Bûlleten' fiziologii i patologii dyhaniâ = Bulletin Physiology and Pathology of Respiration 2013; (47):41–47 (in Russian).
21. Vizel A.A., Vizel I.Y. [Sarkoidosis: basic provisions of the project of federal clinical recommendations]. Therapy 2019; (5):20–26 (in Russian). https://doi.org/10.18565/therapy.2019.5.20-26
22. Statement on sarcoidosis. Joint Statement of the American Thoracic Society (ATS), the European Respiratory Society (ERS) and the World Association of Sarcoidosis and Other Granulomatous Disorders (WASOG) adopted by the ATS Board of Directors and by the ERS Executive Committee, February 1999. Am. J. Respir. Crit. Care Med. 1999; 160(2):736–755. https://doi.org/10.1164/ajrccm.160.2.ats4-99
23. Miller M.R., Hankinson J., Brusasco V., Burgos F., Casaburi R., Coates A., Crapo R., Enright P., van der Grinten C.P.M., Gustafsson P., Jensen R., Johnson D.C., MacIntyre N., McKay R., Navajas D., Pedersen O.F., Pellegrino R., Viegi G., Wanger J. Standardisation of spirometry. Eur. Respir. J. 2005; 26:319–338. https://doi.org/10.1183/09031936.05.00034805
24. Coates A.L., Wanger J., Cockcroft D.W., Culver B.H., Kai-Håkon Carlsen, Diamant Z., Gauvreau G., Hall G.L., Hallstrand T.S., Horvath I., de Jongh F.H.C., Joos G., Kaminsky D.A., Laube B.L., Leuppi J.D., Sterk P.J. ERS technical standard on bronchial challenge testing: general considerations and performance of methacholine challenge tests. Eur. Respir. J. 2017; 49:1601526. https://doi.org/10.1183/13993003.01526-2016
25. Hallstrand T.S., Leuppi J.D., Joos G., Hall G.L., Carlsen K.H., Kaminsky D.A., Coates A.L., Cockcroft D.W., Culver B.H., Diamant Z., Gauvreau G.M., Horvath I., de Jongh F.H.C., Laube B.L., Sterk P.J., Wanger J. ERS technical standard on bronchial challenge testing: pathophysiology and methodology of indirect airway challenge testing. Eur. Respir. J. 2018; 52(5):1801033. https://doi.org/10.1183/13993003.01033-2018
26. Wanger J., Clausen J.L., Coates A., Pedersen O.F., Brusasco V., Burgos F., Casaburi R., Crapo R., Enright P., van der Grinten C.P.M., Gustafsson P., Hankinson J., Jensen R., Johnson D., MacIntyre N., McKay R., Miller M.R., Navajas D., Pellegrino R., Viegi G. Standardisation of the measurement of lung volumes. Eur. Respir. J. 2005; 26(3):511–522. https://doi.org/10.1183/09031936.05.00035005
27. Salaffi F., Carotti M., Bosello S., Ciapetti A., Gutierrez M., Bichisecchi E., Giuseppetti G., Ferraccioli G. Computer- aided quantification of interstitial lung disease from high resolution computed tomography images in systemic sclerosis: correlation with visual reader-based score and physiologic tests. Biomed. Res. Int. 2015; 2015:834262. https://doi.org/10.1155/2015/834262
28. Dhagat P.K., Singh S., Jain M., Singh S.N., Sharma R.K. Thoracic sarcoidosis: imaging with high resolution computed tomography. J. Clin. Diagn. Res. 2017; 11(2):TC15–TC18. https://doi.org/10.7860/JCDR/2017/24165.9459
29. Lenshin A.V., Ignat'eva E.A., Il'in A.V., Perelman J.M. [To the question of reforming the classification of thoracic sarcoidosis]. Bûlleten' fiziologii i patologii dyhaniâ = Bulletin Physiology and Pathology of Respiration 2021; (79):8–20 (in Russian). https://doi.org/10.36604/1998-5029-2021-79-8-20
30. Gattinoni L., Caironi P., Pelosi P., Goodman L.R. What has computed tomography taught us about the acute respiratory distress syndrome? Am. J. Respir. Crit. Care Med. 2001; 164(9):1701–1711. https://doi.org/10.1164/ajrccm.164.9.2103121
Review
For citations:
Ignat’eva E.A., Il’in A.V., Perelman J.M. Diagnostics of pulmonary sarcoidosis by the method of computed tomographic densitovolumetry. Bulletin Physiology and Pathology of Respiration. 2022;(84):49-62. (In Russ.) https://doi.org/10.36604/1998-5029-2022-84-49-62