Adenosine triphosphate level and capsaicin-induced changes in mitochondrial membrane potential in mononuclear cells of patients with chronic obstructive pulmonary disease
https://doi.org/10.36604/1998-5029-2025-96-33-44
Abstract
Introduction. Cellular energy supply is a key aspect of their functioning, mediated by mitochondria. Despite reports of energy deficiency in COPD, we previously found an increase in mitochondrial membrane potential (ΔΨm) in the leukocytes of affected individuals. At the same time, increased expression of transient receptor potential channels TRPV1 was observed in COPD, raising questions about their potential role in regulating mitochondrial functions.
Aim. To assess ΔΨm and adenosine triphosphate (ATP) levels in peripheral blood mononuclear cells of COPD patients and to clarify the effect of the TRPV1 agonist capsaicin on ΔΨm.
Materials and methods. The study included 42 COPD patients of varying severity and 11 control subjects without signs of bronchial obstruction. All participants underwent spirometry and body plethysmography to assess lung function. The amount of ATP was measured by the luminometric method on a plate analyzer, with mean ATP content per cell calculated. ΔΨm was determined by flow cytometry using the ratiometric cationic carbonylcyanine dye JC-1. The dynamics of ΔΨm in response to TRPV1 activation by capsaicin were assessed and the results were expressed as a percentage of ΔΨm in unstimulated cells.
Results. It was found that the ATP content in the peripheral blood mononuclear cells of COPD patients was higher than in the control group (0.96 (0.36; 1.79) fmol/cell vs. 0.14 (0.11; 0.21) fmol/cell, p = 0.001). Capsaicin caused significant changes in ΔΨm in the mononuclear cells of COPD patients: 33.1 (-19.0; 86.0)% for lymphocytes and 48.2 (0.0; 126.7) % for monocytes (p = 0.001). However, ΔΨm did not differ significantly between COPD patients and the control group either at baseline or under capsaicin stimulation. In COPD patients with higher FEV1 values, ΔΨm was elevated in both lymphocytes (0.69 (0.64; 0.86) vs. 0.51 (0.35; 0.61), p = 0.004) and monocytes (0.28 (0.21; 0.37) vs. 0.18 (0.13; 0.29), p = 0.015).
Conclusion. We found no evidence of energy deficiency in mononuclear cells from COPD patients, however, in patients with severe and very severe ventilatory impairment, some decrease in ΔΨm may occur without affecting ATP production. Increased ATP production in COPD may be mediated by increased TRPV1 expression and could play a pathological role by activating purinergic signaling.
Keywords
About the Authors
I. Yu. SugayloRussian Federation
Ivana Yu. Sugaylo, PhD (Med.), Staff Scientist
Laboratory of Molecular and Translational Research
675000; 22 Kalinina Str.; Blagoveshchensk
D. E. Naumov
Russian Federation
Denis E. Naumov, PhD (Med.), Head of Laboratory
Laboratory of Molecular and Translational Research
675000; 22 Kalinina Str.; Blagoveshchensk
D. A. Gassan
Russian Federation
Dina A. Gassan, PhD (Med.), Head of Laboratory
Laboratory of Mechanisms of Virus-Associated Developmental Pathologies
675000; 22 Kalinina Str.; Blagoveshchensk
O. O. Kotova
Russian Federation
Olesya O. Kotova, PhD (Med.), Senior Staff Scientist
Laboratory of Mechanisms of Virus-Associated Developmental Pathologies
675000; 22 Kalinina Str.; Blagoveshchensk
A. V. Konev
Russian Federation
Andrey V. Konev, Junior Staff Scientist
Laboratory of Mechanisms of Virus-Associated Developmental Pathologies
675000; 22 Kalinina Str.; Blagoveshchensk
E. G. Sheludko
Russian Federation
Elizaveta G. Sheludko, PhD (Med.), Staff Scientist
Laboratory of Molecular and Translational Research
675000; 22 Kalinina Str.; Blagoveshchensk
References
1. Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for Prevention, Diagnosis and Management of Chronic Obstructive Pulmonary Disease. 2025. Available at: http://www.goldcopd.org
2. Boers E., Barrett M., Vuong V., Benjafield A., Su J., Kaye L., Tellez D., Nunez C., Malhotra A. An estimate of the global COPD prevalence in 2050: disparities by income and gender. Eur. Respir. J. 2022; 60(66):4608. doi: 10.1183/13993003.congress-2022.4608
3. Rey-Brandariz J., Pérez-Ríos M., Ahluwalia J.S., Beheshtian K., Fernández-Villar A., Represas-Represas C., Piñeiro M., Alfageme I., Ancochea J., Soriano J.B., Casanova C., Cosío B.G., García-Río F., Miravitlles M., de Lucas P., Rodríguez González-Moro J.M., Soler-Cataluña J.J., Ruano-Ravina A. Tobacco patterns and risk of chronic obstructive pulmonary disease: results from a cross-sectional study. Arch. Bronconeumol. 2023; 59(11):717–724, doi: 10.1016/j.arbres.2023.07.009
4. Zong Y., Li H., Liao P., Chen L., Pan Y., Zheng Y., Zhang C., Liu D., Zheng M., Gao J. Mitochondrial dysfunction: mechanisms and advances in therapy. Signal Transduct. Target Ther. 2024; 9(1):124. doi: 10.1038/s41392-024-01839-8
5. Zorova L.D., Popkov V.A., Plotnikov E.J., Silachev D.N., Pevzner I.B., Yankauskas S.S., Zorov S.D., Babenko V.A., Zorov D.B. [Role of mitochondrial membrane potential]. Biologicheskie membrany 2017; 34(6):93–100 (in Russian). doi: 10.7868/S0233475517060020
6. Rajasekaran N.S., Connell P., Christians E.S., Yan L.J., Taylor R.P., Orosz A., Zhang X.Q., Stevenson T.J., Peshock R.M., Leopold J.A., Barry W.H., Loscalzo J., Odelberg S.J., Benjamin I.J. Human alpha B-crystallin mutation causes oxido-reductive stress and protein aggregation cardiomyopathy in mice. Cell 2007; 130(3):427–439. doi: 10.1016/j.cell.2007.06.044
7. Li C.L., Liu J.F., Liu S.F. Mitochondrial dysfunction in chronic obstructive pulmonary disease: unraveling the molecular nexus. Biomedicines 2024; 12(4):814. doi: 10.3390/biomedicines12040814
8. Puente-Maestu L., Pérez-Parra J., Godoy R., Moreno N., Tejedor A., González-Aragoneses F., Bravo J.L., Alvarez F.V., Camaño S., Agustí A. Abnormal mitochondrial function in locomotor and respiratory muscles of COPD patients. Eur. Respir. J. 2009; 33(5):1045–1052. doi: 10.1183/09031936.00112408
9. Wiegman C.H., Michaeloudes C., Haji G., Narang P., Clarke C.J., Russell K.E., Bao W., Pavlidis S., Barnes P.J., Kanerva J., Bittner A., Rao N., Murphy M.P., Kirkham P.A., Chung K.F., Adcock I.M., COPDMAP. Oxidative stress-induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 2015; 136(3):769–780. doi: 10.1016/j.jaci.2015.01.046
10. Agarwal A.R., Kadam S., Brahme A., Agrawal M., Apte K., Narke G., Kekan K., Madas S., Salvi S. Systemic Immuno-metabolic alterations in chronic obstructive pulmonary disease (COPD). Respir. Res. 2019; 20(1):171. doi: 10.1186/s12931-019-1139-2
11. Bel’skikh E.S., Uryas’ev O.M., Zvyagina V.I., Faletrova S.V [Development of secondary mitochondrial dysfunction of mononuclear blood leukocytes in patients with chronic obstructive pulmonary disease and chronic bronchitis]. Kazan Medical Journal 2018; 99(5):741–747 (in Russian). doi: 10.17816/KMJ2018-741
12. Sugaylo I.Yu., Gassan D.A., Naumov D.E., Kotova O.O., Gorchakova Y.G., Sheludko E.G. [The state of mitochondrial membrane potential in peripheral blood leukocytes of patients with chronic obstructive pulmonary disease]. Bûlleten' fiziologii i patologii dyhaniâ = Bulletin Physiology and Pathology of Respiration 2023; 89:25–35 (in Russian). doi: 10.36604/1998-5029-2023-89-25-35
13. Ederlé C., Charles A.L., Khayath N., Poirot A., Meyer A., Clere-Jehl R., Andres E., De Blay F., Geny B. Mitochondrial function in peripheral blood mononuclear cells (PBMC) is enhanced, together with increased reactive oxygen species, in severe asthmatic patients in exacerbation. J. Clin. Med. 2019; 8(10):1613. doi: 10.3390/jcm8101613
14. Naumov D.E., Sugaylo I.Yu., Kotova O.O., Gassan D.A., Gorchakova Y.G., Sheludko E.G. [Expression of transient receptor potential channels on peripheral blood leukocytes of patients with chronic obstructive pulmonary disease]. Siberian Journal of Clinical and Experimental Medicine 2023; 38(4):125–132 (in Russian). doi: 10.29001/2073-8552-2023-659
15. Ogawa N., Kurokawa T., Mori Y. Sensing of redox status by TRP channels. Cell Calcium 2016; 60(2):115–122. doi: 10.1016/j.ceca.2016.02.009
16. Grace M.S., Baxter M., Dubuis E., Birrell M.A., Belvisi M.G. Transient receptor potential (TRP) channels in the airway: role in airway disease. Br. J. Pharmacol. 2014; 171:2593–2607. doi: 10.1111/bph.12538
17. Lang H., Li Q., Yu H., Li P., Lu Z., Xiong S., Yang T., Zhao Y., Huang X., Gao P., Zhang H., Shang Q., Liu D., Zhu Z. Activation of TRPV1 attenuates high salt-induced cardiac hypertrophy through improvement of mitochondrial function. Br. J. Pharmacol. 2015; 172(23):5548–5558. doi: 10.1111/bph.12987
18. Otto M., Bucher C., Liu W., Müller M., Schmidt T., Kardell M., Driessen M.N., Rossaint J., Gross E.R., Wagner N.M. 12(S)-HETE mediates diabetes-induced endothelial dysfunction by activating intracellular endothelial cell TRPV1. J. Clin. Investig. 2020; 130(9):4999–5010. doi: 10.1172/JCI136621
19. Perelman A., Wachtel C., Cohen M., Haupt S., Shapiro H., Tzur A. JC-1: alternative excitation wavelengths facilitate mitochondrial membrane potential cytometry. Cell Death Dis. 2012; 3(11):e430. doi: 10.1038/cddis.2012.171
20. Perry S.W., Norman J.P., Barbieri J., Brown E.B., Gelbard H.A. Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques 2011; 50(2):98–115. doi: 10.2144/000113610
21. Weinberg S.E., Sena L.A., Chandel N.S. Mitochondria in the regulation of innate and adaptive immunity. Immunity 2015; 42(3):406–417. doi: 10.1016/j.immuni.2015.02.002
22. Sena L.A., Li S., Jairaman A., Prakriya M., Ezponda T., Hildeman D.A., Wang C.R., Schumacker P.T., Licht J.D., Perlman H., Bryce P.J., Chandel N.S. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 2013; 38(2):225–236. doi: 10.1016/j.immuni.2012.10.020
23. Kelley N., Jeltema D., Duan Y., He Y. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int. J. Mol. Sci. 2019; 20(13):3328. doi: 10.3390/ijms20133328
24. Bao Y., Ledderose C., Seier T., Graf A.F., Brix B., Chong E., Junger W.G. Mitochondria regulate neutrophil activation by generating ATP for autocrine purinergic signaling. J. Biol. Chem. 2014; 289(39):26794–26803. doi: 10.1074/jbc.M114.572495
25. Lommatzsch M., Cicko S., Müller T., Lucattelli M., Bratke K., Stoll P., Grimm M., Dürk T., Zissel G., Ferrari D., Di Virgilio F., Sorichter S., Lunga-rella G., Virchow J.C., Idzko M. Extracellular adenosine triphosphate and chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2010; 181(9):928–934. doi: 10.1164/rccm.200910-1506OC
26. Cicko S., Lucattelli M., Müller T., Lommatzsch M., De Cunto G., Cardini S., Sundas W., Grimm M., Zeiser R., Dürk T., Zissel G., Boeynaems J.M., Sorichter S., Ferrari D., Di Virgilio F., Virchow J.C., Lungarella G., Idzko M. Purinergic receptor inhibition prevents the development of smoke-induced lung injury and emphysema. J. Immunol. 2010; 185(1):688–697. doi: 10.4049/jimmunol.0904042
27. Mortaz E., Braber S., Nazary M., Givi M.E., Nijkamp F.P., Folkerts G. ATP in the pathogenesis of lung emphysema. Eur. J. Pharmacol. 2009; 619(1-3):92–96. doi: 10.1016/j.ejphar.2009.07.022
28. Denton R.M. Regulation of mitochondrial dehydrogenases by calcium ions. Biochim. Biophys. Acta. 2009; 1787(11):1309–1316. doi: 10.1016/j.bbabio.2009.01.005
29. Ponnalagu D., Singh H. Insights into the role of mitochondrial ion channels in inflammatory response. Front. Physiol. 2020; 11:258. doi: 10.3389/fphys.2020.00258
30. Kong F., You H., Zheng K., Tang R., Zheng C. The crosstalk between pattern-recognition receptor signaling and calcium signaling. Int. J. Biol. Macromol. 2021; 192:745–756. doi: 10.1016/j.ijbiomac.2021.10.014
31. Bhave G., Hu H.J., Glauner K.S., Zhu W., Wang H., Brasier D.J., Oxford G.S., Gereau R.W. Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1). Proc. Natl. Acad. Sci. USA. 2003; 100(21):12480–12485. doi: 10.1073/pnas.2032100100
32. Kao C.C., Hsu J.W., Bandi V., Hanania N.A., Kheradmand F., Jahoor F. Glucose and pyruvate metabolism in severe chronic obstructive pulmonary disease. J. Appl. Physiol. (1985). 2012; 112(1):42–47. doi: 10.1152/japplphysiol.00599.2011
33. Ferreira B.L., Sousa M.B., Leite G.G.F., Brunialti M.K.C., Nishiduka E.S., Tashima A.K., van der Poll T., Salomão R. Glucose metabolism is upregulated in the mononuclear cell proteome during sepsis and supports endotoxin-tolerant cell function. Front. Immunol. 2022; 13:1051514. doi: 10.3389/fimmu.2022.1051514
Review
For citations:
Sugaylo I.Yu., Naumov D.E., Gassan D.A., Kotova O.O., Konev A.V., Sheludko E.G. Adenosine triphosphate level and capsaicin-induced changes in mitochondrial membrane potential in mononuclear cells of patients with chronic obstructive pulmonary disease. Bulletin Physiology and Pathology of Respiration. 2025;(96):33-44. (In Russ.) https://doi.org/10.36604/1998-5029-2025-96-33-44