Effect of capsaicin on phagocytic activity of peripheral blood monocytes in patients with chronic obstructive pulmonary disease
https://doi.org/10.36604/1998-5029-2025-96-45-51
Abstract
Introduction. Chronic obstructive pulmonary disease (COPD) is a common disorder and the third leading cause of death globally. It may be characterized by impaired phagocytosis and efferocytosis, which contributes to chronic nflammation and increases the risk of bacterial respiratory infections. Previously, we established hyperexpression of TRPV1 channels in monocytes and macrophages of patients with COPD.
Aim. To study the phagocytic activity of monocytes in patients with COPD and to evaluate the effect of the TRPV1 agonist capsaicin on the efficiency of phagocytosis in vitro.
Materials and methods. The study included 42 patients with COPD of varying severity and 11 control subjects. Phagocytic activity of monocytes was tested by flow cytometry using competent E. coli XL1-Blue cells transformed with pTurboGFP-B plasmid.
Results. The results of the study showed no statistically significant differences in the initial phagocytic activity of monocytes between patients with COPD and healthy volunteers (78.6 (73.4–87.4) % vs. 84.8 (65.6–88.3) %, p = 0.77). Exposure to capsaicin caused significant inhibition of E. coli phagocytosis in both groups: in COPD patients (from 78.6 (73.4–87.4) % to 64.4 (55.9–71.8) %, p < 0.001) and in the control group (from 84.8 (65.6–88.3) % to 71.4 (65.7–74.0) %, p < 0.01). Moreover, the degree of phagocytosis suppression under the influence of capsaicin was higher in COPD patients compared to the control (–17.5 (–24.9; –13.1)% vs. –9.4 (–16.4; –3.3)%, p = 0.03). However, after exposure to capsaicin, there were also no significant differences in the level of phagocytosis between the study groups.
Conclusion. Thus, our data indicate that monocytes from COPD patients do not exhibit significant abnormalities in phagocytic activity in vitro. Stimulation of TRPV1 with capsaicin results in statistically significant inhibition of E. coli phagocytosis in both groups, with a more pronounced decrease observed in COPD, which confirms the role of this receptor in modulating the immune functions of monocytes, given the increased expression of TRPV1 and the presence of endogenous activating stimuli..
About the Authors
D. A. GassanRussian Federation
Dina A. Gassan, PhD (Med.), Head of Laboratory
Laboratory of Mechanisms of Virus-Associated Developmental Pathologies
675000; 22 Kalinina Str.; Blagoveshchensk
D. E. Naumov
Russian Federation
Denis E. Naumov, PhD (Med.), Head of Laboratory
Laboratory of Molecular and Translational Research
675000; 22 Kalinina Str.; Blagoveshchensk
I. Yu. Sugaylo
Russian Federation
Ivana Yu. Sugaylo, PhD (Med.), Staff Scientist
Laboratory of Molecular and Translational Research
675000; 22 Kalinina Str.; Blagoveshchensk
O. O. Kotova
Russian Federation
Olesya O. Kotova, PhD (Med.), Senior Staff Scientist
Laboratory of Mechanisms of Virus-Associated Developmental Pathologies
675000; 22 Kalinina Str.; Blagoveshchensk
A. V. Konev
Russian Federation
Andrey V. Konev, Junior Staff Scientist
Laboratory of Mechanisms of Virus-Associated Developmental Pathologies
675000; 22 Kalinina Str.; Blagoveshchensk
E. Y. Afanas’eva
Russian Federation
Evgeniya Yu. Afanas’eva, PhD (Med.), Staff Scientist
Laboratory of Molecular and Translational Research
675000; 22 Kalinina Str.; Blagoveshchensk
References
1. GBD 2021 Forecasting Collaborators. Burden of disease scenarios for 204 countries and territories, 2022-2050: a forecasting analysis for the Global Burden of Disease Study 2021. Lancet 2024; 403(10440):2204–2256. doi: 10.1016/S0140-6736(24)00685-8
2. MacNee W., Tuder R.M. New paradigms in the pathogenesis of chronic obstructive pulmonary disease I. Proc. Am. Thorac. Soc. 2009; 6(6):527–531. doi: ?10.1513/pats.200905-027D
3. Hurst J., Skolnik N., Hansen J., Anzueto A., Donaldson G., Dransfield M., Varghese P. Understanding the impact of chronic obstructive pulmonary disease exacerbations on patient health and quality of life. Eur. J. Intern. Med. 2020; 73:1–6. doi: 10.1016/j.ejim.2019.12.014
4. Belchamber K.B.R., Donnelly L. Macrophage dysfunction in respiratory disease. Results Probl. Cell Differ. 2017; 62:299–313. doi: 10.1007/978-3-319-54090-0_12
5. Barnes P. Alveolar macrophages as orchestrators of COPD. COPD 2004; 1(6):59–70. doi: 10.1081/COPD-120028701
6. Kopf M., Schneider C., Nobs S. The development and function of lung-resident macrophages and dendritic cells. Nat. Immunol. 2015; 16(1):36–44. doi: 10.1038/ni.3052
7. Joshi N., Walter J., Misharin A. Alveolar macrophages. Cell Immunol. 2018; 330:86–90. doi: 10.1016/j.cellimm.2018.01.005
8. Taylor A., Finney-Hayward T., Quint J., Thomas C., Tudhope S. Defective macrophage phagocytosis of bacteria in COPD. Eur. Respir J. 2010; 35(5):1039-1047. doi: 10.1183/09031936.00036709
9. Hodge S., Hodge G., Ahern J., Jersmann H., Holmes M., Reynolds P. Smoking alters alveolar macrophage recognition and phagocytic ability implications in chronic obstructive pulmonary disease. Am. J. Respir. Cell. Mol. Biol. 2007; 37(6):748–755. doi: 10.1165/rcmb.2007-0025OC
10. Berenson C., Garlipp M., Grove L., Maloney J., Sethi S. Impaired phagocytosis of nontypeable Haemophilus influenzae by human alveolar macrophages in chronic obstructive pulmonary disease. J. Infect. Dis. 2006; 194(10):1375–1384. doi: 10.1086/508428
11. Alawi K., Keeble J. The paradoxical role of the transient receptor potential vanilloid 1 receptor in inflammation. Pharmacol. Ther. 2010; 125(2):181–195. doi: 10.1016/j.pharmthera.2009.10.005
12. Caterina M., Leffler A., Malmberg A., Martin W., Trafton J., Petersen-Zeitz K., Koltzenburg M., Basbaum A., Julius D. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 2000; 288(5464): 306–313. doi: 10.1126/science.288.5464.306
13. Omari S., Adams M., Geraghty D. TRPV1 channels in immune cells and hematological malignancies. Adv. Pharmacol. 2017; 79:173–198. doi: 10.1016/bs.apha.2017.01.002
14. Bertin S., Aoki-Nonaka Y., de Jong P., Nohara L., Xu H., Stanwood S., Srikanth S., Lee J., To K., Abramson L. The ion channel TRPV1 regulates the activation and proinflammatory properties of CD4+ T cells. Nat. Immunol. 2014; 15(11):1055–1063. doi: 10.1038/ni.3009
15. Kim J. The emerging role of TRPV1 in airway inflammation. Allergy Asthma Immunol. Res. 2018; 10(3):187–188. doi: 10.4168/aair.2018.10.3.187
16. Naumov D.E., Sugaylo I.Yu., Kotova O.O., Gassan D.A., Gorchakova Y.G., Sheludko E.G. [Expression of transient receptor potential channels on peripheral blood leukocytes of patients with chronic obstructive pulmonary disease]. Siberian Journal of Clinical and Experimental Medicine 2023; 38(4):125–132 (in Russian) doi: 10.29001/2073-8552-2023-659
17. Berenson C.S., Kruzel R.L., Eberhardt E., Sethi S. Phagocytic dysfunction of human alveolar macrophages and severity of chronic obstructive pulmonary disease. J. Infect. Dis. 2013; 208(12):2036–2045. doi: 10.1093/infdis/jit400
18. Jubrail J., Kurian N., Niedergang F. Macrophage phagocytosis cracking the defect code in COPD. Biomed. J. 2017; 40(6):305–312. doi: 10.1016/j.bj.2017.09.004
19. Singh R., Belchamber K.B.R., Fenwick P.S., Chana K., Donaldson G., Wedzicha J.A., Barnes P.J., Donnelly L., COPDMAP consortium. Defective monocyte-derived macrophage phagocytosis is associated with exacerbation frequency in COPD. Respir. Res. 2021; 22(1):113. doi: 10.1186/s12931-021-01718-8
20. Tóth B.I., Benko S., Szöllosi A.G., Kovács L., Rajnavölgyi E., Bíró T. Transient receptor potential vanilloid-1 signaling inhibits differentiation and activation of human dendritic cells. FEBS Lett. 2009; 583(10):1619–1624. doi: 10.1016/j.febslet.2009.04.031
Review
For citations:
Gassan D.A., Naumov D.E., Sugaylo I.Yu., Kotova O.O., Konev A.V., Afanas’eva E.Y. Effect of capsaicin on phagocytic activity of peripheral blood monocytes in patients with chronic obstructive pulmonary disease. Bulletin Physiology and Pathology of Respiration. 2025;(96):45-51. (In Russ.) https://doi.org/10.36604/1998-5029-2025-96-45-51