Patterns of development of cardiovascular disorders in patients with COVID-19 (brief review)
https://doi.org/10.36604/1998-5029-2022-84-127-136
Abstract
Introduction. Cardiovascular diseases remain the leading cause of death, both in Russia and in most other countries, and the problem of cardiovascular disorders in patients with COVID-19 is currently extremely important.
Aim. To summarize the literature data on patterns of development of cardiovascular disorders in patients with COVID-19.
Results. The article presents a literature review of the PubMed and Google Scholar databases on the patterns of development of cardiovascular disorders in patients with COVID-19. The pathogenetic relationship of the viral spike S-protein with angiotensin-converting enzyme 2 in the mechanisms of regulation of the cardiovascular and immune systems was shown. The role of pro-inflammatory cytokines in the formation of inflammation and fibrosis in cardiovascular pathology has been determined. The changes in the cardiovascular system against the background of COVID-19 were demonstrated. The basic principles of the interaction of the SARS-CoV-2 virus with endotheliocytes and cardiomyocytes, the mechanisms of inflammatory reactions that underlie the development of cardiovascular pathology in COVID-19 are described.
Conclusion. An analysis of current data regarding damage to the cardiovascular system in COVID-19 led to the conclusion that, despite considerable achievements in this field of research, many aspects are not fully understood and require further study. The practical significance of this review is determined in the identification of potential therapeutic targets for the prevention of complications in COVID-19, as well as in expanding the possibilities of diagnosing SARS-CoV-2. Probably the crucial importance to reduce complications, as well as associated mortality, is the development of an effective method for modulating the immune response.
About the Author
A. S. ShulgaRussian Federation
Andrey S. Shulga, Postgraduate Student, Department of Hospital Surgery with a Pediatric Surgery Course
95 Gor'kogo Str., Blagoveshchensk, 675000, Russian Federation
References
1. Zhu N., Zhang D, Wang W., Li X., Yang B., Jingdong Song J., Zhao X., Huang B., Shi W., Lu R., Niu P., Zhan F., Ma X., Wang D., Xu W., Wu G., Gao G.F., Tan W. A novel coronavirus from patients with pneumonia in china, 2019. N. Engl. J. Med. 2020; 382(8):727–733. https://doi.org/10.1056/NEJMoa2001017
2. Zhou P., Yang X.L, Wang X.G., Hu B., Zhang L. Zhang W., Si H.R., Zhu Y., Li B., Huang CL, Chen HD., Chen J., Luo Y., Guo H., Jiang RD., Liu MQ., Chen Y., Shen X.R., Wang X., Zheng X.S, Zhao K., Chen Q.J., Deng F, Liu L, Yan B., Zhan F.X., Wang Y.Y., Xiao G.F., Shi Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798):270–273. https://doi.org/10.1038/s41586-020-2951-z
3. World Health Organization. WHO Coronavirus Disease (COVID-19) Dashboard. Available at: https://covid19.who.int
4. Driggin E., Madhavan M.V., Bikdeli B., Chuich T., Laracy J., Biondi-Zoccai J, Brown T.S., Nigoghossian C.D., Zidar D.A., Haythe J., Brodie D., Beckman J.A., Kirtane A.J, Stone G.W., Krumholz H.M., Parikh S.A. Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the COVID-19 Pandemic. J. Am. Coll. Cardiol. 2020; 75(18):2352–2371. https://doi.org/10.1016/j.jacc.2020.03.031
5. Bavishi C., Bonow R.O., Trivedi V., Abbott J.D., Messerli F.H., Bhatt D.L. Acute myocardial injury in patients hospitalized with COVID-19 infection: a review. Prog. Cardiovasc. Dis. 2020; 63(5):682–689. https://doi.org/10.1016/j.pcad.2020.05.013
6. Wang D., Hu B., Hu C., Zhu F., Liu X., Zhang J. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus – infected pneumonia in Wuhan, China. JAMA 2020; 323(11):1061–1069. https://doi.org/10.1001/jama.2020.1585
7. Deng Q., Hu B., Zhang Y., Wang H., Zhou X., Hu W. Suspected myocardial injury in patients with COVID-19: evidence from front-line clinical observation in Wuhan, China. Int. J. Cardiol. 2020; 311:116–121. https://doi.org/10.1016/j.ijcard.2020.03.087
8. Nishiga M., Wang D.W., Han Y., Lewis D.B., Wu D.C. COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nat. Rev. Cardiol. 2020; 17(9):543–558. https://doi.org/10.1038/s41569-020-0413-9
9. Arutyunov G.P., Tarlovskaya Е. I., Arutyunov A.G., Belenkov Y.N., Konradi A.O., Lopatin Yu.M., Rebrov A.P., Tereshchenko S.N., Chesnikova A.I., Hayrapetyan H.G., Babin A.P., Bakulin I.G., Bakulina N.V., Balykova L.A., Blagonravova A.S., Boldina M.V., Vaisberg A.R., Galyavich A.S., Gomonova V.V., Grigorieva N.U. et al. [Clinical features of post-COVID-19 period. Results of the international register “Dynamic analysis of comorbidities in SARS-CoV-2 survivors (AKTIV SARS-CoV-2)”. Data from 6-month follow-up]. Russian Journal of Cardiology 2021; 26(10):4708 (in Russian). https://doi.org/10.15829/1560-4071-2021-4708
10. Shi S., Qin M., Shen B., Cai Y., Liu T., Yang F., Gong W., Liu X., Liang J., Zhao O., Huang H., Yang B., Huang C. Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. JAMA Cardiol. 2020; 5(7):802–810. https://doi.org/10.1001/jamacardio.2020.0950
11. Ramadan M.S., Bertolino L., Zampino R., Durante-Mangoni E. Cardiac sequelae after coronavirus disease 2019 recovery: a systematic review. Clin. Microbiol. Infect. 2021; 27(9):1250–1261. https://doi.org/10.1016/j.cmi.2021.06.015
12. Chung M.K, Zidar D.A., Bristow M.R, Cameron S.J, Chan T., Harding C.V, Kwon D.H., Singh T., Tilton J.C., Tsai E.J., Tucker N.R., Barnard J., Loscalzo J. COVID-19 and Cardiovascular Disease. Circ. Res. 2021; 128(8):1214–1236. https://doi.org/10.1161/CIRCRESAHA.121.317997
13. Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S., Schiergens T.S., Herrler G., Wu N., Nitsche A., Müller M.A., Drosten C., Pöhlmann S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 18(2):271–280. https://doi.org/10.1016/j.cell.2020.02.052
14. Arévalos V., Ortega-Paz L., Rodríguez-Arias J.J., López M.C, Castrillo-Golvano L., Salazar-Rodríguez A., Sabaté-Tormos M., Spione F., Sabaté M., Brugaletta S. Acute and Chronic Effects of COVID-19 on the Cardiovascular System. J. Cardiovasc. Dev. Dis. 2021; 8(10):128. doi: 10.3390/jcdd8100128
15. Zulli A., Rai S., Buxton B.F., Burrell L.M., Hare D.L. Co-localization of angiotensin-converting enzyme 2-, octomer-4- and CD34-positive cells in rabbit atherosclerotic plaques. Exp. Physiol. 2008; 93(5):564–569. https://doi.org/10.1113/expphysiol.2007.040204
16. Purushothaman K.R. Expression of angiotensin-converting enzyme 2 and its end product angiotensin 1–7 is increased in diabetic atheroma: implications for inflammation and neovascularization. Cardiovasc. Pathol. 2013; 22(1):42–48. https://doi.org/10.1016/j.carpath.2012.05.004
17. Sluimer J.C. Angiotensin-converting enzyme 2 (ACE2) expression and activity in human carotid atherosclerotic lesions. J. Pathol. 2008; 215(3):273–279. https://doi.org/10.1002/path.2357
18. Jiang F., Yang J., Zhang Y., Dong M., Wang S., Zhang O., Liu F.F., Zhang K., Zhang C. Angiotensin-converting enzyme 2 and angiotensin 1–7: novel therapeutic targets. Nat. Rev. Cardiol. 2014; 11(7):413–426. https://doi.org/10.1038/nrcardio.2014.59
19. Dong D., Zhang C., Feng J.B., Zhao Y.X., Li S.Y., Yang Y.P., Dong Q.L., Deng B.P., Zhu L., Yu Q.T, Liu C.X., Liu B., Pan C.M., Song H.D., Zhang M.X., Zhang Y. Overexpression of ACE2 enhances plaque stability in a rabbit model of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2008; 28(7):1270−1276. https://doi.org/10.1161/ATVBAHA.108.164715
20. Thomas M.C. Genetic Ace2 deficiency accentuates vascular inflammation and atherosclerosis in the ApoE knockout mouse. Circ. Res. 2010; 107(7):888–897. https://doi.org/10.1161/CIRCRESAHA.110.219279
21. Thatcher S.E. Angiotensin-converting enzyme 2 deficiency in whole body or bone marrow-derived cells increases atherosclerosis in low-density lipoprotein receptor mice. Arterioscler. Thromb. Vasc. Biol. 2011; 31(4):758–765. https://doi.org/10.1161/ATVBAHA.110.221614
22. Sahara M. Deletion of angiotensin-converting enzyme 2 promotes the development of atherosclerosis and arterial neointima formation. Cardiovasc. Res. 2014; 101(2):236–246. https://doi.org/10.1093/cvr/cvt245
23. Adu-Amankwaah J., Mprah R., Adekunle A.O, Noah M.N., Adzika G.K., Machuki J.O., Sun H. The cardiovascular aspect of COVID-19. Ann. Med. 2021; 53(1):227–236. https://doi.org/10.1080/07853890.2020.1861644
24. Guo T., Fan Y., Chen M., Wu X., Zhang L., He T., Wang H., Wan J., Wang X., Lu Z. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020; 5(7):811. https://doi.org/10.1001/jamacardio.2020.1017
25. Fard D., Huguet R., Koutsoukis A., Deguillard C., Tuffreau A.S., Deux J.F., Lim P., Teiger E. SARS-COV-2 myocarditis. An update. Ann. Cardiol. Angeiol. 2020; 69(6):349–354. https://doi.org/10.1016/j.ancard.2020.10.001
26. Oudit G.Y., Kassiri Z., Jiang C., Liu P.P., Poutanen S.M., Penninger J.M., Butany J. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur. J. Clin. Investig. 2009; 39(7):618–625. https://doi.org/10.1111/j.1365-2362.2009.02153.x
27. Lindner D., Fitzek A., Bräuninger H., Aleshcheva G., Edler C., Meissner K., Scherschel K., Kirchhof P., Escher F., Schultheiss H.P., Blankenberg S., Püschel K., Westermann D. Association of Cardiac Infection With SARS-CoV-2 in Confirmed COVID-19 Autopsy Cases. JAMA Cardiol. 2020; 5(11):281–1285. https://doi.org/10.1001/jamacardio.2020.3551
28. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li H., Liu M., Xiao Y., Gao H., Guo L., Xie J., Wang G., Jiang R., Gao Z., Jin Q., WangJ., Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan. Lancet 2020; 395(10223):497–506. https://doi.org/10.1016/S0140-6736(20)30183-5
29. Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Z., Xiang J., Wang Y., Song B., Gu X., Guan L., Wei Y., Li H., Wu X., Xu J., Tu S., Zhang Y., Chen H, Cao B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395(10229):1054–1062. https://doi.org/10.1016/S0140-6736(20)30566-3
30. Crackower M.A., Sarao R., Oudit G.Y., Yagil C., Kozieradzki I., Scanga S.E., Oliveira-dos-Santos A.J., da Costa J., Zhang L., Pei Y., Scholey J., Ferrario C.M., Manoukian A.S., Chappell M.C., Backx P.H., Yagil Y., Penninger J.M. Angiotensin- converting enzyme 2 is an essential regulator of heart function. Nature 2002; 417(6891):822–828. https://doi.org/10.1038/nature00786
31. Oudit G.Y., Kassiri Z., Patel M.P., Chappell M., Butany J., Backx P.H., Tsushima R.G., Scholey J.W., Khokha R., Penninger J.M. Angiotensin II-mediated oxidative stress and inflammation mediate the age-dependent cardiomyopathy in ACE2 null mice. Cardiovasc. Res. 2007; 75(1): 29–39. https://doi.org/10.1016/j.cardiores.2007.04.007
32. Zhao X., Nicholls J.M., Chen Y.G. Severe acute respiratory syndrome-associated coronavirus nucleocapsid protein interacts with Smad3 and modulates transforming growth factor-β signaling. J. Biol. Chem. 2008. 283(6):3272−3280. https://doi.org/10.1074/jbc.M708033200
33. Lala A., Johnson K.W., Januzzi J.L., Russak A.J., Paranjpe I., Richter F., Zhao S., Somani S., Van Vleck T., Vaid A, Chaudhry F., Freitas J., Fayad Z.A., Pinney S.P., Levin M., Charney A., Bagiella E., Narula J., Glicksberg B.S., Nadkarni G., Mancini D.M., Fuster V. Mount Sinai COVID Informatics Center. Prevalence and impact of myocardial injury in patients hospitalized with COVID-19 infection. J. Am. Coll. Cardiol. 2020; 76(5):533–546. https://doi.org/10.1016/j.jacc.2020.06.007
34. Puntmann V.O., Carerj M.L, Wieters I., Fahim M., Arendt C., Hoffmann J., Shchendrygina A., Escher F., Vasa-Nicotera M., Zeiher A.M., Vehreschild M., Nage E. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020; 5 (11):1265–1273. https://doi.org/10.1001/jamacardio.2020.3557
35. Rojulpote C., Gonuguntla K., Patil S., Bhattaru A., Bravo P. COVID-19 and the heart. Colomb. Med. 2020; 51(2):1−5. https://doi.org/10.25100/cm.v51i2.4320
36. Siripanthong B., Nazarian S., Muser D., Deo R., Santangeli P., Khanji M.Y., Cooper L.T., C. Anwar A. Chahal. Recognizing COVID-19–related myocarditis: The possible pathophysiology and proposed guideline for diagnosis and management. Heart Rhythm 2020; 17(9):1463–1471. https://doi.org/10.1016/j.hrthm.2020.05.001
37. Peretto G., Sala S., Rizzo S., Palmisano A., Esposito A., Cobelli F.D., Campochiaro C., Luca G.D., Foppoli L., Dagna L., Thiene G., Basso C., Bella P.D. Ventricular arrhythmias in myocarditis: characterization and relationships with myocardial inflammation. J. Am. Coll. Cardiol. 2020; 75(9):1046–1057. https://doi.org/10.1016/j.jacc.2020.01.036 38. Zheng Y.Y., Ma Y.T., Zhang J.Y., Xie X. COVID-19 and the cardiovascular system. Nat. Rev. Cardiol. 2020. 17(5):259–260. https://doi.org/10.1038/s41569-020-0360-5
38. Miró Ò., Llorens P., Jiménez S., Piñera P., Burillo-Putze G., Martín A., Martín-Sánchez F.J., González del Castillo J. Frequency of five unusual presentations in patients with COVID-19: results of the UMC-19-S1. Epidemiol. Infect. 2020; 148(e189):1−4. https://doi.org/10.1017/S0950268820001910
39. Basso C., Leone O., Rizzo S., de Gaspari M., van der Wal A.C., Aubry M.C, Bois M.C., Lin P.T., Maleszewski J.J., Stone J.R. Pathological features of COVID-19-associated myocardial injury: a multicentre cardiovascular pathology study. Eur. Heart. J. 2020; 41(39);3827–3835. https://doi.org/10.1093/eurheartj/ehaa664
40. Hanley B., Naresh K.N., Roufosse C., Nicholson A.G., Weir J., Cooke G.D, Thursz M., Manousou P., Corbett R., Goldin R., Al-Sarraj S., Abdolrasouli A., Swann O.C., Baillon L., Penn R., Barclay W.S., Viola P., Osborn M. Histopathological findings and viral tropism in UK patients with severe fatal COVID-19: a post-mortem study. Lancet Microbe 2020. 1(6):e245–e253. https://doi.org/10.1016/s2666-5247(20)30115-4
41. Amoozgar B., Kaushal V., Mubashar U., Sen S., Yousaf S., Yotsuya M. Symptomatic pericardial effusion in the setting of asymptomatic COVID-19 infection: a case report. Medicine. 2020; 99(37):22093. https://doi.org/10.1097/MD.0000000000022093
42. Ortiz-Martínez Y., Cabeza-Ruiz L.D, Vásquez-Lozano S.H., Villamil-Gómez W.E., Rodriguez-Morales A.J. Pericarditis in a young internal medicine resident with COVID-19 in Colombia. Travel Med. Infect. Dis. 2020; 37:101863. https://doi.org/10.1016/j.tmaid.2020.101863
43. Asif T., Kassab K., Iskander F., Alyousef T. Acute pericarditis and cardiac tamponade in a patient with COVID-19: a therapeutic challenge. Eur. J. Case Reports Intern. 2020;79(6):0017017. https://doi.org/10.12890/2020_001701
44. Beckerman J.K., Alarfaj M., Tracy C.M., Faiwiszewski A.D., Choi A.D. Coronavirus disease 2019 (COVID-19)-associated constrictive pericarditis. BMJ Case Rep. 2021; 14(5):e242018. https://doi.org/10.1136/bcr-2021-242018
45. Bao C., Liu X., Zhang H., Li Y., Liu J. Coronavirus disease 2019 (COVID-19) CT findings: a systematic review and meta-analysis. J. Am. Coll. Radiol. 2020; 17(6):701–709. https://doi.org/10.1016/j.jacr.2020.03.006
46. Libby P., Lüscher T. COVID-19 is, in the end, an endothelial disease. Eur. Heart J. 2020; 41(32):3038–3044. https://doi.org/10.1093/eurheartj/ehaa623
47. Ruan Q., Yang K., Wang W., Jiang L., Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020; 46(5):846–848. https://doi.org/10.1007/s00134-020-05991-x
48. Lopalco G., Rigante D., Cantarini L., Imazio M., Lopalco A., Emmi G., Venerito V., Fornaro M., Frediani B., Nivuori M., Brucato A., Iannone F. The autoinflammatory side of recurrent pericarditis: Enlightening the pathogenesis for a more rational treatment. Trends Cardiovasc. Med. 2020. 31(5):265−274. https://doi.org/10.1016/j.tcm.2020.04.006
49. Leask A., Abraham D.J. TGF-beta signaling and the fibrotic response. FASEB J. 2004; 18(7):816–827. https://doi.org/10.1096/fj.03-1273rev
50. Ramasamy V., Mayosi B.M., Sturrock E.D., Ntsekhe M. Established and novel pathophysiological mechanisms of pericardial injury and constrictive pericarditis. World J. Cardiol. 2018; 10(9):87−96. https://doi.org/10.4330/wjc.v10.i9.87
Review
For citations:
Shulga A.S. Patterns of development of cardiovascular disorders in patients with COVID-19 (brief review). Bulletin Physiology and Pathology of Respiration. 2022;(84):127-136. (In Russ.) https://doi.org/10.36604/1998-5029-2022-84-127-136