Preview

Bulletin Physiology and Pathology of Respiration

Advanced search

Diffusing capacity of lungs in chronic obstructive pulmonary disease: gender, age, and race aspects

https://doi.org/10.36604/1998-5029-2022-85-116-130

Abstract

Introduction. Diffusion capacity of lungs is the second most important respiratory test after spirometry. The importance of assessing lung diffusion capacity in chronic obstructive pulmonary disease (COPD) is not given due attention, although this parameter reflects changes in functional lung volume and gas transport through the alveolar-capillary membrane, thereby providing more information about respiratory physiology than spirometry results. Diffusing capacity of the lung for carbon monoxide (DLCO) measurement is the standard in pulmonology, however, in recent years, close attention has been given to the determination of lung diffusion capacity for nitric oxide (DLNO), which gives better explanation of gas transport through the alveolar-capillary membrane compared to DLCO. Recent literature is actively discussing the inclusion of age, race, and gender aspects in spirometric reference equations that are used to assess spirometric parameters and lung diffusion capacity.
Aim. To analyze the literature over the past five years, reflecting the views of modern researchers on methods for diagnosing lung diffusion capacity, as well as the contribution of age, race, and gender aspects to the assessment of this parameter in COPD.
Materials and methods. The PubMed database was searched for information for the period 2017-2022 according to the selected inclusion criteria. Information requests included the following set of keywords: “diffusion capacity”, “chronic obstructive pulmonary disease”, “gender”, “age”, “race”, “DLNO”, “DLCO”. 123 articles were analyzed.
Results. Recent evidence highlights the importance of including lung diffusivity in COPD prognostic programs. Determining the diffusion capacity of the lungs for nitric oxide may be a promising area of research soon. Gender and age considerations play an important role in the interpretation of spirometry data and lung diffusion capacity. The issue of including a racial trait in the assessment of the diffusing capacity of the lungs in COPD is in doubt.

About the Authors

O. Yu. Kytikova
Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration - Research Institute of Medical Climatology and Rehabilitative Treatment
Russian Federation

Oxana Yu. Kytikova, MD, PhD, DSc (Med.), Staff Scientist of Laboratory of Rehabilitative Treatment

73g Russkaya Str., Vladivostok, 690105



M. V. Antonyuk
Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration – Research Institute of Medical Climatology and Rehabilitative Treatment
Russian Federation

Marina V. Antonyuk, MD, PhD, DSc (Med.), Рrofessor, Head of Laboratory of Rehabilitative Treatment

73g Russkaya Str., Vladivostok, 690105



T. A. Gvozdenko
Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration – Research Institute of Medical Climatology and Rehabilitative Treatment
Russian Federation

Tatiana A. Gvozdenko, MD, PhD, DSc (Med.), Professor of RAS, Main Staff Scientist of Laboratory of Rehabilitative Treatment, Director

73g Russkaya Str., Vladivostok, 690105



T. P. Novgorodtseva
Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration – Research Institute of Medical Climatology and Rehabilitative Treatment
Russian Federation

Tatiana P. Novgorodtseva, PhD, DSc (Biol.), Рrofessor, Deputy Director on Scientific Work, Main Staff Scientist of Laboratory of Biomedical Research

73g Russkaya Str., Vladivostok, 690105



References

1. Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management and Prevention of Chronic Obstructive Pulmonary Disease (2020 report). Available at: https://goldcopd.org/gold-reports/

2. Sandelowsky H., Weinreich U.M., Aarli B.B., Sundh J., Høines K., Stratelis G., Løkke A., Janson C., Jensen C., Larsson K. COPD − do the right thing. BMC Fam. Pract. 2021; 22(1):244. https://doi.org/10.1186/s12875-021-01583-w

3. Halpin D.M.G., Criner G.J., Papi A., Singh D., Anzueto A., Martinez F.J., Agusti A.A., Vogelmeier C.F. Global initiative for the diagnosis, management, and prevention of chronic obstructive lung disease. The 2020 GOLD science committee report on COVID-19 and chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2021; 203(1):24–36. https://doi.org/10.1164/rccm.202009-3533SO

4. Adeloye D., Song P., Zhu Y., Campbell H., Sheikh A., Rudan I. Global, regional, and national prevalence of, and risk factors for, chronic obstructive pulmonary disease (COPD) in 2019: a systematic review and modelling analysis. Lancet Respir. Med. 2022; 10(5):447−458. https://doi.org/10.1016/S2213-2600(21)00511-7

5. Rodrigues S.O., Cunha C.M.C.D., Soares G.M.V., Silva P.L., Silva A.R., Gonçalves-de-Albuquerque C.F. Mechanisms, Pathophysiology and Currently Proposed Treatments of Chronic Obstructive Pulmonary Disease. Pharmaceuticals (Basel) 2021; 14(10):979. https://doi.org/10.3390/ph14100979

6. Balasubramanian A., MacIntyre N.R., Henderson R.J., Jensen R.L., Kinney G., Stringer W.W., Hersh C.P., Bowler R.P., Casaburi R., Han M.K., Porszasz J., Barr R.G. Make B.J., Wise R.A., McCormack M.C. Diffusing capacity of carbon monoxide in assessment of COPD. Chest 2019; 156(6):1111−1119. https://doi.org/10.1016/j.chest.2019.06.035

7. Xu X., Huang K., Dong F., Qumu S., Zhao Q., Niu H., Ren X., Gu X., Yu T., Pan L., Yang T., Wang C. The Heterogeneity of Inflammatory Response and Emphysema in Chronic Obstructive Pulmonary Disease. Front. Physiol. 2021; 12:783396. https://doi.org/10.3389/fphys.2021.783396

8. Bakker J.T., Klooster K., Bouwman J., Pelgrim G.J., Vliegenthart R., Slebos D.J. Evaluation of spirometry-gated computed tomography to measure lung volumes in emphysema patients. ERJ Open Res. 2022; 8(1):00492-2021. https://doi.org/10.1183/23120541.00492-2021

9. Radovanovic D., Contoli M., Marco F.D., Sotgiu G., Pelaia G., Braido F., Corsico A.G., Micheletto C., Rogliani P., Scichilone N., Saderi L., Santus P., Solidoro P. Clinical and functional characteristics of COPD Patients across GOLD Classifications: results of a multicenter observational study. COPD 2019; 16(3-4):215–226. https://doi.org/10.1080/15412555.2019.1659760

10. Ni Y., Yu Y., Dai R., Shi G. Diffusing capacity in chronic obstructive pulmonary disease assessment: A meta-analysis. Chron. Respir. Dis. 2021; 18:14799731211056340. https://doi.org/10.1177/14799731211056340

11. Wardyn P.M., de Broucker V., Chenivesse C., Sobaszek A., Van Bulck R., Perez T., Edmé J.L., Hulo S. Assessing the applicability of the new Global Lung Function Initiative reference values for the diffusing capacity of the lung for carbon monoxide in a large population set. PLoS One 2021; 16(1):e0245434. https://doi.org/10.1371/journal.pone.0245434

12. Ogata H., Katahira K., Enokizu-Ogawa A., Jingushi Y., Ishimatsu A., Taguchi K., Nogami H., Aso H., Moriwaki A., Yoshida M. The association between transfer coefficient of the lung and the risk of exacerbation in asthma-COPD overlap: an observational cohort study. BMC Pulm. Med. 2022; 22(1):22. https://doi.org/10.1186/s12890-021-01815-w

13. Masekela R., Hall G.L., Stanojevic S., Sartorius B., MacGinty R., Saad H.B., Trabelsi Y., Messan F., Arigliani M., Ketfi A., Gray D. An urgent need for African spirometry reference equations: the Paediatric and Adult African Spirometry study. Int. J. Tuberc. Lung Dis. 2019; 23(8):952–958. https://doi.org/10.5588/ijtld.18.0442

14. Madanhire T., Ferrand R.A., Attia E.F., Sibanda E.N., Rusakaniko S., Rehman A.M. Validation of the global lung initiative 2012 multi-ethnic spirometric reference equations in healthy urban Zimbabwean 7-13 year-old school children: a cross-sectional observational study. BMC Pulm. Med. 2020; 20(1):56. https://doi.org/10.1186/s12890-020-1091-4

15. Casanova C., Gonzalez-Dávila E., Martínez-Gonzalez C., Cosio B.G., Fuster A., Feu N., Solanes I., Cabrera C., Marin J.M., Balcells E., Peces-Barba G., de Torres J.P., Marín-Oto M., Calle M., Golpe R., Ojeda E., Divo M., Pinto-Plata V., Amado C., López-Campos J.L., Celli B.R. Natural course of the diffusing capacity of the lungs for carbon monoxide in COPD: importance of sex. Chest 2021; 160(2):481–490. https://doi.org/10.1016/j.chest.2021.03.069

16. Scicluna V., Han M. COPD in Women: Future Challenges. Arch. Bronconeumol. 2022; S0300-2896(22)00485-9. https://doi.org/10.1016/j.arbres.2022.06.008

17. Han MK. Chronic Obstructive Pulmonary Disease in Women: A Biologically Focused Review with a Systematic Search Strategy. Int. J. Chron. Obstruct. Pulmon. Dis. 2020; 15:711–721. https://doi.org/10.2147/COPD.S237228

18. Zarrabian B., Mirsaeidi M.A. Trend Analysis of Chronic Obstructive Pulmonary Disease Mortality in the United States by Race and Sex. Ann. Am. Thorac. Soc. 2021; 18(7):1138–1146. https://doi.org/10.1513/AnnalsATS.202007-822OC

19. DeMeo DL. Sex and Gender Omic Biomarkers in Men and Women With COPD: Considerations for Precision Medicine. Chest 2021; 160(1):104–113. https://doi.org/10.1016/j.chest.2021.03.024

20. Gut-Gobert C., Cavaillès A., Dixmier A., Guillot S., Jouneau S., Leroyer C., Marchand-Adam S., Marquette D., Meurice J.C., Desvigne N., Morel H., Person-Tacnet C., Raherison C. Women and COPD: do we need more evidence? Eur. Respir. Rev. 2019; 28(151):180055. https://doi.org/10.1183/16000617.0055-2018

21. Hernández Cordero A.I., Yang C.X., Li X., Milne S., Chen V., Hollander Z., Ng R., Criner G.J., Woodruff P.G., Lazarus S.C., Connett J.E., Han M.K., Martinez F.J., Reed R.M., Man S.F.P., Leung J.M., Sin D.D. Epigenetic marker of telomeric age is associated with exacerbations and hospitalizations in chronic obstructive pulmonary disease. Respir Res. 2021; 22(1):316. https://doi.org/10.1186/s12931-021-01911-9

22. Yang W., Li F., Li C., Meng J., Wang Y. Focus on Early COPD: Definition and Early Lung Development. Int. J. Chron. Obstruct. Pulmon. Dis. 2021; 16:3217–3228. https://doi.org/10.2147/COPD.S338359

23. Wang G., Hallberg J., Charalampopoulos D., Sanahuja M.C., Breyer-Kohansal R., Langhammer A., Granell R., Vonk J.M., Mian A., Olvera N., Laustsen L.M., Rönmark E., Abellan A., Agusti A., Arshad S.H., Bergström A., Boezen H.M., Breyer M.K., Burghuber O., Bolund A.C., Custovic A., Devereux G., Donaldson G.C. Duijts L., Esplugues A., Faner R., Ballester F., Garcia-Aymerich J., Gehring U., Haider S., Hartl S., Backman H., Holloway J.W., Koppelman G.H., Lertxundi A., Holmen T.L., Lowe L., Mensink-Bout S.M., Murray C.S., Roberts G., Hedman L., Schlünssen V., Sigsgaard T., Simpson A., Sunyer J., Torrent M., Turner S., Van den Berge M., Vermeulen R.C.H., Vikjord S.A.A., Wedzicha J.A., Maitland van der Zee A.H., Melén E. Spirometric phenotypes from early childhood to young adulthood: a Chronic Airway Disease Early Stratification study. ERJ Open Res. 2021; 7(4):00457-2021. https://doi.org/10.1183/23120541.00457-2021

24. Laffey K.G., Nelson A.D., Laffey M.J., Nguyen Q., Sheets L.R., Schrum A.G. Chronic respiratory disease disparity between American Indian/Alaska Native and white populations, 2011-2018. BMC Public Health 2021; 21(1):1466. https://doi.org/10.1186/s12889-021-11528-8

25. Elmaleh-Sachs A., Balte P., Oelsner E.C., Allen N.B., Baugh A., Bertoni A.G., Hankinson J.L., Pankow J., Post W.S., Schwartz J.E., Smith B.M., Watson K., Barr R.G. Race/Ethnicity, Spirometry Reference Equations, and Prediction of Incident Clinical Events: The Multi-Ethnic Study of Atherosclerosis (MESA) Lung Study. Am. J. Respir. Crit. Care Med. 2022; 205(6):700–710. https://doi.org/10.1164/rccm.202107-1612OC

26. Guillien A., Soumagne T., Regnard J., Degano B. Groupe Fonction de la SPLF. The new reference equations of the Global Lung function Initiative (GLI) for pulmonary function tests. Rev. Mal. Respir. 2018; 35(10):1020–1027. https://doi.org/10.1016/j.rmr.2018.08.021

27. Tanabe N., Rhee C.K., Sato S., Muro S., Shima H., Tanimura K., Jung K.S., Yoo K.H., Hirai T. Disproportionally Impaired Diffusion Capacity Relative to Airflow Limitation in COPD. COPD 2020; 17(6):627–634. https://doi.org/10.1080/15412555.2020.1845639

28. Stanojevic S., Graham B.L., Cooper B.G., Thompson B.R., Carter K.W., Francis R.W., Hall G.L. Official ERS technical standards: Global Lung Function Initiative reference values for the carbon monoxide transfer factor for Caucasians. Eur. Respir. J. 2017; 50(3):170010. https://doi.org/10.1183/13993003.00010-2017

29. Graham B.L., Brusasco V., Burgos F., Cooper B.G., Jensen R., Kendrick A., MacIntyre N.R.,Thompson B.R., Wanger J. 2017 ERS/ATS standards for single-breath carbon monoxide uptake in the lung. Eur. Respir. J. 2017; 49(1):pii:1600016. https://doi.org/10.1183/13993003.00016-2016

30. Dridi R., Dridi N., Govindasamy K., Gmada N., Aouadi R., Guénard H., Laher I., Saeidi A., Suzuki K., Hackney A.C., Zouhal H. Effects of Endurance Training Intensity on Pulmonary Diffusing Capacity at Rest and after Maximal Aerobic Exercise in Young Athletes. Int. J. Environ. Res. Public Health 2021; 18(23):12359. https://doi.org/10.3390/ijerph182312359

31. DeCato T.W., Hegewald M.J. Diffusing Capacity, the Too Often Ignored Lung Function Test in COPD. Chest 2021; 160(2):389‒390. https://doi.org/10.1016/j.chest.2021.05.005

32. Johnson D.C. Interpretation of Diffusing Capacity. Chest 2021; 159(6):2513‒2514. https://doi.org/10.1016/j.chest.2020.12.054

33. Borland C., Hughes J.M. Lung Diffusing Capacities (DL) for Nitric Oxide (NO) and Carbon Monoxide (CO): The Evolving Story. Compr. Physiol. 2019; 10(1):73‒97. https://doi.org/10.1002/cphy.c190001

34. Zavorsky G.S., Almamary A.S., Alqahtani M.K., Shan S.HS., Gardenhire D.S. The need for race-specific reference equations for pulmonary diffusing capacity for nitric oxide. BMC Pulm. Med. 2021; 21(1):232. https://doi.org/10.1186/s12890-021-01591-7

35. Elbehairy A.F., O'Donnell C.D., Abd Elhameed A., Vincent S.G., Milne K.M., James M.D., Webb K.A., Neder J.A., O'Donnell D.E. Low resting diffusion capacity, dyspnea, and exercise intolerance in chronic obstructive pulmonary disease. J. Appl. Physiol. (1985) 2019; 127(4):1107‒1116. https://doi.org/10.1152/japplphysiol.00341.2019

36. Celli B.R., Locantore N., Tal-Singer R., Riley J., Miller B., Vestbo J., Yates J.C., Silverman E.K., Owen C.A., Divo M., Pinto-Plata V., Wouters E.F.M., Faner R., Agusti A. Emphysema and extrapulmonary tissue loss in COPD: a multiorgan loss of tissue phenotype. Eur. Respir. J. 2018; 51(2):1702146. doi: 10.1183/13993003.02146-2017

37. Uemasu K., Sato S., Muro S., Sato A., Tanabe N., Hasegawa K., Hamakawa Y., Mizutani T., Fuseya Y., Tanimura K., Takahashi T., Hirai T. Annual decline in arterial blood oxygen predicts development of chronic respiratory failure in COPD with mild hypoxaemia: a 6-year follow-up study. Respirology 2019; 24(3):262–269. https://doi.org/10.1111/resp.13402

38. Kovacs G., Agusti A., Barberà J.A., Celli B., Criner G., Humbert M., Sin D.D., Voelkel N., Olschewski H. Pulmonary vascular involvement in chronic obstructive pulmonary disease: is there a pulmonary vascular phenotype? Am. J. Respir. Crit. Care Med. 2018; 198(8):1000‒1011. https://doi.org/10.1164/rccm.201801-0095PP

39. Choi J., Sim J.K., Oh J.Y., Lee Y.S., Hur G.Y., Lee S.Y., Shim J.J., Rhee C.K., Min K.H. Prognostic marker for severe acute exacerbation of chronic obstructive pulmonary disease: analysis of diffusing capacity of the lung for carbon monoxide (DLCO) and forced expiratory volume in one second (FEV1). BMC Pulm. Med. 2021; 21(1):152. https://doi.org/10.1186/s12890-021-01519-1

40. Kang J., Oh Y.M., Lee J.H., Kim E.K., Lim S.Y., Kim W.J., Yoon H.I., Kim T.H., Park T.S., Kim S.O., Lee S.W., Lee S.D., Lee J.S. Distinctive patterns of pulmonary function change according to baseline lung volume and diffusing capacity. Int. J. Tuberc. Lung Dis. 2020; 24(6):597‒605. https://doi.org/10.5588/ijtld.19.0401

41. de-Torres J.P., O'Donnell D.E., Marín J.M., Cabrera C., Casanova C., Marín M., Ezponda A., Cosio B.G., Martinez C., Solanes I., Fuster A,. Neder J.A., Gonzalez-Gutierrez J., Celli B.R. Clinical and Prognostic Impact of Low Diffusing Capacity for Carbon Monoxide Values in Patients With Global Initiative for Obstructive Lung Disease I COPD. Chest 2021; 160(3):872‒878. https://doi.org/10.1016/j.chest.2021.04.033

42. Zou R.H., Bon J. Reduced Dlco in GOLD I COPD: Moving Towards a Multidimensional Approach to Risk Stratification. Chest 2021; 160(3):791‒792. https://doi.org/10.1016/j.chest.2021.05.016

43. Hall G.L., Filipow N., Ruppel G., Okitika T., Thompson B., Kirkby J, Steenbruggen I, Cooper B.G., Stanojevic S. Official ERS technical standard: global lung function initiative reference values for static lung volumes in individuals of European ancestry. Eur. Respir. J. 2021; 57(3):2000289. https://doi.org/10.1183/13993003.00289-2020.

44. Baugh A.D., Shiboski S., Hansel N.N., Ortega V., Barjaktarevic I., Barr R.G., Bowler R., Comellas A.P., Cooper C.B., Couper D., Criner G., Curtis J.L., Dransfield M., Ejike C., Han M.K., Hoffman E., Krishnan J., Krishnan J.A., Mannino D., Paine R. 3rd, Parekh T, Peters S., Putcha N., Rennard S., Thakur N., Woodruff P.G. Reconsidering the Utility of Race-Specific Lung Function Prediction Equations. Am. J. Respir. Crit. Care Med. 2022; 205(7):819–829. https://doi.org/10.1164/rccm.202105-1246OC

45. Kaminsky D.A. Is There a Role for Using Race-Specific Reference Equations? Yes and No. Am. J. Respir. Crit. Care Med. 2022; 205(7):746‒748. https://doi.org/10.1164/rccm.202201-0006ED

46. Graham B.L., Steenbruggen I., Miller M.R., Graham B.L., Steenbruggen I., Miller M.R., Barjaktarevic I.Z., Cooper B.G., Hall G.L., Hallstrand T.S., Kaminsky D.A., McCarthy K., McCormack M.C., Oropez C.E., Rosenfeld M., Stanojevic S., Swanney M.P., Thompson B.R. Standardization of spirometry 2019. Update an official American Thoracic Society and European Respiratory Society technical statement. Am. J. Respir. Crit. Care Med. 2019; 200(8):e70–e88. https://doi.org/10.1164/rccm.201908-1590ST

47. Howarth T., Saad H.B., Perez A.J., Atos C.B., White E., Heraganahally S.S. Comparison of diffusing capacity of carbon monoxide (DLCO) and total lung capacity (TLC) between Indigenous Australians and Australian Caucasian adults. PLoS One 2021; 16(4):e0248900. https://doi.org/10.1371/journal.pone.0248900

48. Vaz Fragoso C.A., Rochester C.L., McAvay G.J., Iannone L., Leo-Summers L.S. Diffusing capacity in normalfor- age spirometry and spirometric impairments, using reference equations from the global lung function initiative. Respir. Med. 2020; 170:106037. https://doi.org/10.1016/j.rmed.2020.106037

49. Schallerer A.E., Duke J.W., Speros J.P., Mangum T.S., Norris H.C., Beasley K.M., Laurie S.S., Elliott J.E., Davis J.T., Lovering A.T. Lower transfer factor of the lung for carbon monoxide in women with a patent foramen ovale. Exp. Physiol. 2022; 107(3):243‒252. https://doi.org/10.1113/EP090176

50. Munkholm M., Marott J.L., Bjerre-Kristensen L., Madsen F., Pedersen O.F., Lange P. Reference equations for pulmonary diffusing capacity of carbon monoxide and nitric oxide in adult Caucasians. Eur. Respir. J. 2018; 52(1):1500677. https://doi.org/10.1183/13993003.00677-2015

51. Vyas D.A., Eisenstein L.G., Jones D.S. Hidden in plain sight - reconsidering the use of race correction in clinical algorithms. N. Engl. J. Med. 2020; 383(9):874–882. https://doi.org/10.1056/NEJMms2004740

52. Culver B.H., Graham B.L., Coates A.L., Wanger J., Berry C.E., Clarke P.K., Hallstrand T.S., Hankinson J.L., Kaminsky D.A., MacIntyre N.R., McCormack M.C., Rosenfeld M., Stanojevic S, Weiner D.J. Recommendations for a standardized pulmonary function report. An official American thoracic society technical statement. Am. J. Respir. Crit. Care Med. 2017; 196(11):1463–1472. https://doi.org/10.1164/rccm.201710-1981ST

53. Schluger N.W. The Vanishing Rationale for the Race Adjustment in Pulmonary Function Test Interpretation. Am. J. Respir. Crit. Care Med. 2022; 205(6):612‒614. https://doi.org/10.1164/rccm.202112-2772ED

54. Gaffney A.W., McCormick D., Woolhandler S., Christiani D.C., Himmelstein D.U. Prognostic implications of differences in forced vital capacity in black and white US adults: findings from NHANES III with long-term mortality follow-up. EClinicalMedicine 2021; 39:101073. https://doi.org/10.1016/j.eclinm.2021.101073

55. He B., Huang J.V., Kwok M.K., Au Yeung S.L., Hui L.L., Li A.M., Leung G.M, Schooling C.M. The association of early-life exposure to air pollution with lung function at ∼17.5 years in the “Children of 1997” Hong Kong Chinese Birth Cohort. Environ. Int. 2019; 123:444–450. https://doi.org/10.1016/j.envint.2018.11.073

56. Voraphani N., Stern D.A., Zhai J., Wright A.L., Halonen M., Sherrill D.L., Hallberg J., Kull I., Bergström A., Murray C.S., Lowe L., Custovic A., Morgan W.J., Martinez F.D., Melén E., Simpson A., Guerra S. The role of growth and nutrition in the early origins of spirometric restriction in adult life: a longitudinal, multicohort, population-based study. Lancet Respir. Med. 2021; 10(1):59–71. https://doi.org/10.1016/S2213-2600(21)00355-6

57. Braun L. Race correction and spirometry: why history matters. Chest 2021; 159(4):1670–1675. https://doi.org/10.1016/j.chest.2020.10.046

58. Ketfi A., Ben Saad H. The global lung function initiative 2021 (GLI-2021) norms provide mixed results for static lung volumes (SLVs) in Algerian adults. Libyan J. Med. 2022; 17(1):2059893. https://doi.org/10.1080/19932820.2022.2059893

59. Witonsky J., Elhawary J.R., Eng C., Rodríguez-Santana J.R., Borrell L.N., Burchard E.G. Race- and Ethnicity- Based Spirometry Reference Equations: Are They Accurate for Genetically Admixed Children? Chest 2022;162(1):184‒195. https://doi.org/10.1016/j.chest.2021.12.664.


Review

For citations:


Kytikova O.Yu., Antonyuk M.V., Gvozdenko T.A., Novgorodtseva T.P. Diffusing capacity of lungs in chronic obstructive pulmonary disease: gender, age, and race aspects. Bulletin Physiology and Pathology of Respiration. 2022;(85):116-130. (In Russ.) https://doi.org/10.36604/1998-5029-2022-85-116-130

Views: 420


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-5029 (Print)