Profile of MUC5AC and MUC5B mucins expression in asthma patients under cold exposure
https://doi.org/10.36604/1998-5029-2023-87-52-61
Abstract
Introduction. Cold airway hyperresponsiveness (CAH) is a common condition in patients with asthma, which worsens the clinical course of the disease and the patients’ quality of life. MUC5AC and MUC5B are the main secreted mucins in the respiratory tract, which are involved in normal mucociliary clearance, but also capable of provoking the development of pathological changes in case of dysregulation of their balanced production.
Aim. The aim of this study was to determine the dynamics of MUC5AC and MUC5B expression during experimental cooling in patients with asthma depending on the status of CAH.
Materials and methods. The study enrolled 98 subjects including 26 patients with chronic non-obstructive bronchitis without exacerbation (control group) and 72 patients with asthma. The expression of MUC5AC, MUC5B and TRPM8 was determined in the upper respiratory tract by quantitative reverse transcription PCR. The production of MUC5AC and MUC5B was also measured in sputum by ELISA. All patients underwent a bronchoprovocation test with isocapnic cold air hyperventilation to detect CAH, and a similar nasal challenge was performed to assess the effect of cooling on the expression of the studied genes.
Results. Patients with asthma had 4.22-fold increase in the expression of MUC5AC (p=0.02) in the nasal epithelium as compared with the control group. CAH was associated with an initial 7.33-fold upregulation of MUC5AC (p=0.008) as well as with further increase in MUC5AC expression but a decrease in MUC5B in response to cooling, which was not observed in asthma patients without CAH. Basal TRPM8 expression was associated with baseline level of MUC5AC (ρ=0.41, p=0.04), MUC5B (ρ=0.55, p<0.001) and amount of sputum produced after the cold bronchoprovocation.
Conclusion. Asthma patients with CAH demonstrate a more pronounced imbalance in the production of mucins, which is aggravated by cold exposure. This, in turn, can lead to a number of pathological disorders associated with a more severe course of the disease.
Keywords
About the Author
D. E. NaumovRussian Federation
Denis E. Naumov - PhD (Med.), Head of Laboratory of Molecular and Translational Research.
22 Kalinina Str., Blagoveshchensk, 675000
References
1. Bonser L.R., Erle D.J. Airway Mucus and Asthma: The Role of MUC5AC and MUC5B. J. Clin. Med. 2017; 6(12):112. https://doi.org/10.3390/jcm6120112
2. Lillehoj E.P., Kato K., Lu W., Kim K.C. Cellular and molecular biology of airway mucins. Int. Rev. Cell Mol. Biol. 2013; 303:139–202. https://doi.org/10.1016/B978-0-12-407697-6.00004-0
3. Song D., Cahn D., Duncan G.A. Mucin Biopolymers and Their Barrier Function at Airway Surfaces. Langmuir 2020; 36(43):12773–12783. https://doi.org/10.1021/acs.langmuir.0c02410
4. Martínez-Rivera C., Crespo A., Pinedo-Sierra C., García-Rivero J.L., Pallarés-Sanmartín A., Marina-Malanda N., Pascual-Erquicia S., Padilla A., Mayoralas-Alises S., Plaza V., López-Viña A., Picado C. Mucus hypersecretion in asthma is associated with rhinosinusitis, polyps and exacerbations. Respir. Med. 2018; 135:22–28. https://doi.org/10.1016/j.rmed.2017.12.013
5. Radicioni G., Ceppe A., Ford A.A., Alexis N.E., Barr R.G., Bleecker E.R., Christenson S.A., Cooper C.B., Han M.K., Hansel N.N., Hastie A.T., Hoffman E.A., Kanner R.E., Martinez F.J., Ozkan E., Paine R. 3rd, Woodruff P.G., O'Neal W.K., Boucher R.C., Kesimer M. Airway mucin MUC5AC and MUC5B concentrations and the initiation and progression of chronic obstructive pulmonary disease: an analysis of the SPIROMICS cohort. Lancet Respir. Med. 2021; 9(11):1241– 1254. https://doi.org/10.1016/S2213-2600(21)00079-5
6. Hyrkäs-Palmu H., Ikäheimo T.M., Laatikainen T., Jousilahti P., Jaakkola M.S., Jaakkola J.J.K. Cold weather increases respiratory symptoms and functional disability especially among patients with asthma and allergic rhinitis. Sci. Rep. 2018; 8(1):10131 https://doi.org/10.1038/s41598-018-28466-y
7. Han A., Deng S., Yu J., Zhang Y., Jalaludin B., Huang C. Asthma triggered by extreme temperatures: From epidemiological evidence to biological plausibility. Environ. Res. 2023; 216(Pt2):114489. https://doi.org/10.1016/j.envres.2022.114489
8. Zhu Y., Yang T., Huang S., Li H., Lei J., Xue X., Gao Y., Jiang Y., Liu C., Kan H., Chen R. Cold temperature and sudden temperature drop as novel risk factors of asthma exacerbation: a longitudinal study in 18 Chinese cities. Sci. Total Environ. 2022; 814:151959. https://doi.org/10.1016/j.scitotenv.2021.151959
9. Liu S.C., Lu H.H., Fan H.C., Wang H.W., Chen H.K., Lee F.P., Yu C.J., Chu Y.H. The identification of the TRPM8 channel on primary culture of human nasal epithelial cells and its response to cooling. Medicine (Baltimore) 2017; 96(31):e7640. https://doi.org/10.1097/MD.0000000000007640
10. Lachowicz-Scroggins M.E., Yuan S., Kerr S.C., Dunican E.M., Yu M., Carrington S.D., Fahy J.V. Abnormalities in MUC5AC and MUC5B Protein in Airway Mucus in Asthma. Am. J. Respir. Crit. Care Med. 2016; 194(10):1296–1299. https://doi.org/10.1164/rccm.201603-0526LE
11. Kiwamoto T., Katoh T., Evans C.M., Janssen W.J., Brummet M.E., Hudson S.A., Zhu Z., Tiemeyer M., Bochner B.S. Endogenous airway mucins carry glycans that bind Siglec-F and induce eosinophil apoptosis. J. Allergy Clin. Immunol. 2015; 135(5):1329–1340.e9. https://doi.org/10.1016/j.jaci.2014.10.027
12. Welsh K.G., Rousseau K., Fisher G., Bonser L.R., Bradding P., Brightling C.E., Thornton D.J., Gaillard E.A. MUC5AC and a Glycosylated Variant of MUC5B Alter Mucin Composition in Children With Acute Asthma. Chest 2017; 152(4):771–779. https://doi.org/10.1016/j.chest.2017.07.001
13. Tajiri T., Matsumoto H., Jinnai M., Kanemitsu Y., Nagasaki T., Iwata T., Inoue H., Nakaji H., Oguma T., Ito I., Niimi A. Pathophysiological relevance of sputum MUC5AC and MUC5B levels in patients with mild asthma. Allergol. Int. 2022; 71(2):193–199. https://doi.org/10.1016/j.alit.2021.09.003
14. Evans C.M., Raclawska D.S., Ttofali F., Liptzin D.R., Fletcher A.A., Harper D.N., McGing M.A., McElwee M.M., Williams O.W., Sanchez E., Roy M.G., Kindrachuk K.N., Wynn T.A., Eltzschig H.K., Blackburn M.R., Tuvim M.J., Janssen W.J., Schwartz D.A., Dickey B.F. The polymeric mucin Muc5ac is required for allergic airway hyperreactivity. Nat. Commun. 2015; 6:6281. https://doi.org/10.1038/ncomms7281
15. Nekrasov E.V., Perelman J.M., Prikhodko А.G., Zakharova E.V., Makarova G.A. [Mucin secretion in the nasal mucosa in response to cold air hyperventilation in asthmatics with different degrees of asthma control and disease severity]. Bûlleten' fiziologii i patologii dyhaniâ = Bulletin Physiology and Pathology of Respiration 2014; (53):42‒49 (in Russian).
16. Song D., Iverson E., Kaler L., Boboltz A., Scull M.A., Duncan G.A. MUC5B mobilizes and MUC5AC spatially aligns mucociliary transport on human airway epithelium. Sci. Adv. 2022; 8(47):eabq5049. doi: 10.1126/sciadv.abq5049
17. Roy M.G., Livraghi-Butrico A., Fletcher A.A., McElwee M.M., Evans S.E., Boerner R.M., Alexander S.N., Bellinghausen L.K., Song A.S., Petrova Y.M., Tuvim M.J., Adachi R., Romo I., Bordt A.S., Bowden M.G., Sisson J.H., Woodruff P.G., Thornton D.J., Rousseau K., De la Garza M.M., Moghaddam S.J., Karmouty-Quintana H., Blackburn M.R., Drouin S.M., Davis C.W., Terrell K.A., Grubb B.R., O'Neal W.K., Flores S.C., Cota-Gomez A., Lozupone C.A., Donnelly J.M., Watson A.M., Hennessy C.E., Keith R.C., Yang I.V., Barthel L., Henson P.M., Janssen W.J., Schwartz D.A., Boucher R.C., Dickey B.F., Evans C.M. Muc5b is required for airway defence. Nature 2014; 505(7483):412–416. https://doi.org/10.1038/nature12807
18. Cho H.Y., Park S., Miller L., Lee H.C., Langenbach R., Kleeberger S.R. Role for Mucin-5AC in Upper and Lower Airway Pathogenesis in Mice. Toxicol Pathol. 2021; 49(5):1077–1099. https://doi.org/10.1177/01926233211004433
19. Ehre C., Worthington E.N., Liesman R.M., Grubb B.R., Barbier D., O'Neal W.K., Sallenave J.M., Pickles R.J., Boucher R.C. Overexpressing mouse model demonstrates the protective role of Muc5ac in the lungs. Proc. Natl Acad. Sci. USA 2012; 109(41):16528–16533. https://doi.org/10.1073/pnas.1206552109
20. Kirkham S., Sheehan J.K., Knight D., Richardson P.S., Thornton D.J. Heterogeneity of airways mucus: variations in the amounts and glycoforms of the major oligomeric mucins MUC5AC and MUC5B. Biochem J. 2002; 361(Pt3):537– 546. https://doi.org/10.1042/0264-6021:3610537
21. Naumov D.E., Kotova O.O., Gassan D.A., Afanas’eva E.Yu., Sheludko E.G. [Correlation of cation channel TRPM8 gene expression with cold-induced airway hyperresponsiveness in asthma patients]. Bûlleten' fiziologii i patologii dyhaniâ = Bulletin Physiology and Pathology of Respiration 2019; (72):33–38 (in Russian). https://doi.org/10.12737/article_5d09d6a0d75552.76525437
Review
For citations:
Naumov D.E. Profile of MUC5AC and MUC5B mucins expression in asthma patients under cold exposure. Bulletin Physiology and Pathology of Respiration. 2023;(87):52-61. (In Russ.) https://doi.org/10.36604/1998-5029-2023-87-52-61