Preview

Bulletin Physiology and Pathology of Respiration

Advanced search

Contact methods for registering respiratory rate: opportunities and perspectives

https://doi.org/10.36604/1998-5029-2023-89-159-173

Abstract

Introduction. Respiratory rate is known to be one of the most important indicators reflecting the vital functions of a person. An increase in respiratory rate can be found in many diseases and pathological conditions, for example, in chronic obstructive pulmonary disease, pneumonia, bronchial asthma, myocardial infarction, heart failure, anaemia, etc. Due to the active introduction of telemedicine monitoring into clinical practice, the measurement of the abovementioned indicator is particularly relevant for the purpose of early detection and prevention of complications of chronic non-infectious diseases, as well as dynamic monitoring of the condition of patients in both inpatient and outpatient settings.

Aim. To search and update information about existing and promising developments for the control of respiratory rate based on different physical principles.

Materials and methods. For this review we used databases PubMed, Scopus, MedLine and eLIBRARY. The following keywords were used for the search: “respiratory rate”, “contact”, “measurement”, “sensor”.

Results. Contact methods for measuring respiratory rate include a wide range of sensors based on various physical principles. All types of sensors have their own application, but also they have some drawbacks. In order to achieve maximum accuracy of respiratory rate monitoring, it is necessary to carefully assess the conditions in which the patient is located, selecting the most appropriate technological solutions for them. Probably, complex systems, including several different sensors, are able to overcome many shortcomings. In addition, the development of information analysis methods, machine learning and artificial intelligence technologies can increase the sensitivity and accuracy of methods of measuring respiratory rate, reducing the frequency of bias associated with various artefacts.

Conclusion. Thus, technological development opens up wide opportunities for long-term monitoring of vital functions, prevention and timely response to adverse events.

About the Authors

A. A. Garanin
Samara State Medical University
Russian Federation

Andrey A. Garanin, MD, PhD (Med.), Director of Scientific and Practical Centre of Distant Medicine, Clinics 

89 Chapaevskaya Str., Samara, 443099



A. O. Rubanenko
Samara State Medical University
Russian Federation

Anatoliy O. Rubanenko, MD, PhD (Med.), Associate Professor of Propaedeutic Therapy Department

89 Chapaevskaya Str., Samara, 443099



I. D. Shipunov
Samara State Medical University
Russian Federation

Ivan D. Shipunov, MD, Doctor of Medical Prevention, Scientific and Practical Centre of Distant Medicine, Clinics 

89 Chapaevskaya Str., Samara, 443099



V. S. Rogova
Samara State Medical University
Russian Federation

Valeriya S. Rogova, MD, Doctor of Medical Prevention, Scientific and Practical Centre of Distant Medicine, Clinics 

89 Chapaevskaya Str., Samara, 443099



References

1. Folke M., Cernerud L., Ekström M., Hök B. Critical review of non-invasive respiratory monitoring in medical care. Med. Biol. Eng. Comput. 2003; 41(4):377–383. https://doi.org/10.1007/BF02348078

2. AL-Khalidi F. Q., Saatchi R., Burke D., Elphick H., Tan S. Respiration rate monitoring methods: A review. Pediatr. Pulmonol. 2011; 46(6):523–529. https://doi.org/10.1002/ppul.21416

3. Schena E., Massaroni C., Saccomandi P., Cecchini S. Flow measurement in mechanical ventilation: a review. Med. Eng. Phys. 2015; 37(3):257–264. https://doi.org/10.1016/j.medengphy.2015.01.010

4. Stocks J., Sly P.D., Tepper R.S., Morgan W.J. Infant Respiratory Function Testing. John Wiley & Sons: Hoboken. NJ. USA; 1996.

5. Lilly J.C. Flow meter for recording respiratory flow of human subjects. Methods Med. Res. 1950; 2:113–121.

6. Tardi G., Massaroni C., Saccomandi P., Schena E. Experimental assessment of a variable orifice flowmeter for respiratory monitoring. J. Sens. 2015; 7:1–7. https://doi.org/10.1155/2015/752540

7. Schena E., Saccomandi P., Silvestri S. A high sensitivity fiber optic macro-bend based gas flow rate transducer for low flow rates: theory, working principle, and static calibration. Rev. Sci. Instrum. 2013; 84(2):024301. https://doi.org/10.1063/1.4793227

8. Hoppe P. Temperatures of expired air under varying climatic conditions. Int. J. Biometeorol. 1981; 25:127–132. https://doi.org/10.1007/BF02184460

9. Suzuki S., Matsui T., Kawahara H., Ichiki H., Shimizu J., Kondo Y., Gotoh S., Yura H., Takase B., Ishihara M. A non-contact vital sign monitoring system for ambulances using dual-frequency microwave radars. Med. Biol. Eng. Comput. 2009; 47(1):101–105. https://doi.org/10.1007/s11517-008-0408-x

10. Storck K., Karlsson M., Ask P., Loyd D. Heat transfer evaluation of the nasal thermistor technique. IEEE Trans Biomed Eng. 1996; 43(12):1187–1191. https://doi.org/10.1109/10.544342

11. Lim S., Park S.H., Ahn S.D., Suh Y., Shin S.S., Lee S.W., Kim J.H., Choi E.K., Yi B.Y., Kwon S.I., Kim S., Jeung T.S. Guiding curve based on the normal breathing as monitored by thermocouple for regular breathing. Med. Phys. 2007; 34(11):4514–4518. https://doi.org/10.1118/1.2795829

12. Krehel M., Schmid M., Rossi R.M., Boesel L.F., Bona G.L., Scherer L.J. An optical fibre-based sensor for respiratory monitoring. Sensors (Basel) 2014; 14(7):13088–131101. https://doi.org/10.3390/s140713088

13. Branson R.D., Gentile M.A. Is humidification always necessary during noninvasive ventilation in the hospital? Respir. Care 2010; 55(2):209–216. PMID: 20105346.

14. Farahani H., Wagiran R., Hamidon M.N. Humidity Sensors Principle, Mechanism, and Fabrication Technologies: A Comprehensive Review. Sensors 2014; 14(5):7881–7939. https://doi.org/10.3390/s140507881

15. Kano S., Kim K., Fujii M. Fast-Response and Flexible Nanocrystal-Based Humidity Sensor for Monitoring Human Respiration and Water Evaporation on Skin. ACS Sens. 2017; 2(6):828–833. https://doi.org/10.1021/acssensors.7b00199

16. Kano S., Dobashi Y., Fujii M. Silica Nanoparticle-Based Portable Respiration Sensor for Analysis of Respiration Rate, Pattern, and Phase During Exercise. IEEE Sensors Letters. 2017; 2(1):1–4. https://doi.org/10.1109/LSENS.2017.2787099

17. Zaretskiy A.P., Mityagin K.S., Tarasov V.S., Moroz D.N. [The respiratory rate estimation for a patient based on photoplethysmography data]. Trudy Moskovskogo fiziko-tekhnicheskogo instituta (natsional'nogo issledovatel'skogo universiteta) = Proceedings of Moscow Institute of Physics and Technology 2019; 11(3):61–69 (in Russian).

18. Seifi S., Khatony A., Moradi G., Abdi A., Najafi F. Accuracy of pulse oximetry in detection of oxygen saturation in patients admitted to the intensive care unit of heart surgery: comparison of finger, toe, forehead and earlobe probes. BMC Nurs. 2018; 17:15. https://doi.org/10.1186/s12912-018-0283-1

19. Castaneda D., Esparza A., Ghamari M., Soltanpur C., Nazeran H. A review on wearable photoplethysmography sensors and their potential future applications in health care. Int. J. Biosens. Bioelectron. 2018; 4(4):195–202. https://doi.org/10.15406/ijbsbe.2018.04.00125

20. García-López I., Pramono R.X.A., Rodriguez-Villegas E. Artifacts classification and apnea events detection in neck photoplethysmography signals. Med Biol Eng Comput. 2022; 60:3539–3554. https://doi.org/10.1007/s11517-022-02666-1

21. Mingxu P., Imtiaz S.A., Rodriguez-Villegas E. Pulse oximetry in the neck - a proof of concept. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2017:877–880. https://doi.org/10.1109/EMBC.2017.8036964

22. Garcia-Lopez I., Imtiaz S.A., Rodriguez-Villegas E. Characterization Study of Neck Photoplethysmography. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2018:4355–4358. https://doi.org/10.1109/EMBC.2018.8513247

23. Rogers B., Schaffarczyk M., Gronwald T. Estimation of Respiratory Frequency in Women and Men by Kubios HRV Software Using the Polar H10 or Movesense Medical ECG Sensor during an Exercise Ramp. Sensors (Basel) 2022; 22(19):7156. https://doi.org/10.3390/s22197156

24. Berntson G.G., Cacioppo J.T., Quigley K.S. Respiratory sinus arrhythmia: autonomic origins, physiological mechanisms, and psychophysiological implications. Psychophysiology 1993; 30(2):183–196. https://doi.org/10.1111/j.1469-8986.1993.tb01731.x

25. Helfenbein E., Firoozabadi R., Chien S., Carlson E., Babaeizadeh S. Development of three methods for extracting respiration from the surface ECG: a review. J. Electrocardiol. 2014; 47(6):819−825. https://doi.org/10.1016/j.jelectrocard.2014.07.020

26. Chi Y.M., Jung T.P., Cauwenberghs G. Dry-contact and noncontact biopotential electrodes: methodological review. IEEE Rev. Biomed. Eng. 2010; 3:106–119. https://doi.org/10.1109/RBME.2010.2084078

27. Alikhani I., Noponen K., Hautala A., Ammann R., Seppänen T. Spectral fusion-based breathing frequency estimation; experiment on activities of daily living. BioMed. Eng. OnLine. 2018; 17(1):99. https://doi.org/10.1186/s12938-018-0533-1

28. Andreozzi E., Centracchio J., Punzo V., Esposito D., Polley C., Gargiulo G.D., Bifulco P. Respiration Monitoring via Forcecardiography Sensors. Sensors (Basel) 2021; 21(12):3996. https://doi.org/10.3390/s21123996

29. Lu X., Azevedo Coste C., Nierat M.-C., Renaux S., Similowski T., Guiraud D. Respiratory Monitoring Based on Tracheal Sounds: Continuous Time-Frequency Processing of the Phonospirogram Combined with Phonocardiogram-Derived Respiration. Sensors (Basel) 2021; 21:99. https://doi.org/10.3390/s21010099

30. Eisenberg M.E., Givony D., Levin R. Acoustic respiration rate and pulse oximetry-derived respiration rate: a clinical comparison study. J. Clin. Monit. Comput. 2020; 34:139–146. https://doi.org/10.1007/s10877-018-0222-4

31. Datsok O.M., Vitanova S.A. [Processing a phonocardiographical signal on the basis of wavelet technologies]. Herald of the National Technical University "KhPI". Subject issue: Information Science and Modelling 2008; (24):36−41 (in Russian).

32. Abbasi-Kesbi R., Valipour A., Imani K. Cardiorespiratory system monitoring using a developed acoustic sensor. Healthcare Technol. Lett. 2018; 5(1):7–12. https://doi.org/10.1049/htl.2017.0012

33. Janssens J.P., Cantero C., Pasquina P., Georges M., Rabec C. Monitoring Long Term Noninvasive Ventilation: Benefits, Caveats and Perspectives. Front. Med. (Lausanne). 2022; 9:874523. https://doi.org/10.3389/fmed.2022.874523

34. Ando H., Ashcroft-Kelso H., Halhead R., Chakrabarti B., Young C. A., Cousins R., Angus R. M. Experience of telehealth in people with motor neurone disease using noninvasive ventilation. Disabil. Rehabil. Assist. Technol. 2019; 16(5):490–496. https://doi.org/10.1080/17483107.2019.1659864

35. Janssens J.P., Borel J.C., Pépin J.L., groupe SomnoVNI. Nocturnal monitoring of home non-invasive ventilation: the contribution of simple tools such as pulse oximetry, capnography, built-in ventilator software and autonomic markers of sleep fragmentation. Thorax 2011; 66(5):438−445. https://doi.org/10.1136/thx.2010.139782

36. Bergese S.D., Mestek M.L., Kelley S.D., McIntyre R. Jr., Uribe A.A., Sethi R., Watson J.N., Addison P.S. Multicenter Study Validating Accuracy of a Continuous Respiratory Rate Measurement Derived From Pulse Oximetry: A Comparison With Capnography. Anesth. Analg. 2017; 124(4):1153−1159. https://doi.org/10.1213/ANE.0000000000001852

37. Hutchison R., Rodriguez L. Capnography and Respiratory Depression. AJN, American Journal of Nursing 2008; 108(2):35–39. https://doi.org/10.1097/01.naj.0000310329.55432.9f

38. Khanna A.K, Bergese S.D, Jungquist C.R, Morimatsu H., Uezono S., Lee S., Ti L.K., Urman R.D., McIntyre R. Jr., Tornero C., Dahan A., Saager L., Weingarten T.N., Wittmann M., Auckley D., Brazzi L., Le Guen M., Soto R., Schramm F., Ayad S., Kaw R., Di Stefano P., Sessler D.I., Uribe A., Moll V., Dempsey S.J., Buhre W., Overdyk F.J. Prediction of Opioid-Induced Respiratory Depression on Inpatient Wards Using Continuous Capnography and Oximetry: An International Prospective, Observational Trial. Anesth. Analg. 2020; 131(4):1012−1024. https://doi.org/10.1213/ANE.0000000000004788

39. Hamdani S.T.A., Fernando A. The Application of a Piezo-Resistive Cardiorespiratory Sensor System in an Automobile Safety Belt. Sensors 2015; 15(4):7742−7753. https://doi.org/10.3390/s150407742

40. Atalay O., Kennon W.R., Demirok E. Weft-Knitted Strain Sensor for Monitoring Respiratory Rate and Its ElectroMechanical Modeling. IEEE Sensors Journal 2015; 15(1):110−112. https://doi.org/10.1109/JSEN.2014.2339739

41. Paradiso R., Loriga G., Taccini N. A wearable health care system based on knitted integrated sensors. IEEE Transactions on Information Technology in Biomedicine 2005; 9(3):337−344. https://doi.org/10.1109/TITB.2005.854512

42. Zakeri V., Akhbardeh A., Alamdari N., Fazel-Rezai R., Paukkunen M., Tavakolian K. Analyzing Seismocardiogram Cycles to Identify the Respiratory Phases. IEEE Trans. Biomed. Eng. 2017; 64(8):1786−1792. https://doi.org/10.1109/TBME.2016.2621037

43. Tavakolian K., Vaseghi A., Kaminska B. Improvement of ballistocardiogram processing by inclusion of respiration information. Physiol. Meas. 2008; 29(7):771−781. https://doi.org/10.1088/0967-3334/29/7/006

44. Balali P., Rabineau J., Hossein A., Tordeur C., Debeir O., van de Borne P. Investigating Cardiorespiratory Interaction Using Ballistocardiography and Seismocardiography-A Narrative Review. Sensors (Basel) 2022; 22(23):9565. https://doi.org/10.3390/s22239565

45. Weichao Zh., Hongbo N., Xingshe Zh., Yalong S., Tianben W. Identifying sleep apnea syndrome using heart rate and breathing effort variation analysis based on ballistocardiography. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2015:4536−4539. https://doi.org/10.1109/EMBC.2015.7319403

46. Huysmans D., Borzée P., Testelmans D., Buyse B., Willemen T., Huffel S.V., Varon C. Evaluation of a Commercial Ballistocardiography Sensor for Sleep Apnea Screening and Sleep Monitoring. Sensors (Basel) 2019; 19(9):2133. https://doi.org/10.3390/s19092133

47. Di Rienzo M., Vaini E., Lombardi P. An algorithm for the beat-to-beat assessment of cardiac mechanics during sleep on Earth and in microgravity from the seismocardiogram. Sci. Rep. 2017; 7(1):15634. https://doi.org/10.1038/s41598-017-15829-0

48. Castiglioni P., Meriggi P., Rizzo F., Vaini E., Faini A., Parati G., Di Rienzo M. Seismocardiography while sleeping at high altitude. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2012:3793−3796. https://doi.org/10.1109/EMBC.2012.6346793

49. Tafur E., Cohen L.S., Levine H.D. (1964). The Normal Apex Cardiogram: Its Temporal Relationship to Electrical, Acoustic, and Mechanical Cardiac Events. Circulation 1964; 30(3):381–391. https://doi.org/10.1161/01.cir.30.3.381

50. Fatenkov V.N., Fatenkov О.V. [New in the biomechanics of the heart, arteries and lesser circulation circuit]. Samara: As Gard; 2012 (in Russian). ISBN: 978-5-4259-0173-6.

51. Kozinskiy N.A., Lyusov V.A., Stranin V.G. [Apex cardiography in silent myocardial ischemia diagnostics]. Russian Journal of Cardiology 2004; (4):69−73 (in Russian).

52. Yuzbashev Z.Yu., Mayskova E.A. [Examination methods of the heart based on the registration of low-frequency vibrations of the precordial zone and their diagnostic potentials and perspectives]. Scientific Review. Medical Sciences. 2017; (5):74−94 (in Russian).

53. [The Great Medical Encyclopedia]. 3rd edition (in Russian). Vol.15. Available at: https://бмэ.орг/index.php/МЕХАНОКАРДИОГРАФИЯ

54. Oranskii I.E. [Acceleration Kinetocardiography]. Мoscow: Meditsina; 1973 (in Russian). ISBN: 978-00-1370232- 0.

55. Utkina A.V., Izotova A.G., Litvinova N.A. [Algorithm of respiration rate estimation according to ECG signal] Modern Science 2020; (5-1):415−421 (in Russian).

56. Remizova N.M. [Dynamics of temporal and spectral characteristics of QT interval of ECG when changing the mode and rate of breathing]. I. Yakovlev Chuvash State Pedagogical University Bulletin 2016; (3):18−24 (in Russian).

57. Massaroni C., Nicolò A., Lo Presti D., Sacchetti M., Silvestri S., Schena E. Contact-Based Methods for Measuring Respiratory Rate. Sensors (Basel) 2019; 19(4):908. https://doi.org/10.3390/s19040908

58. Rogoza A.N., Zairova A.R., Oshhepkova E.V. Patent 2428924 RU. [A method for assessing the vasomotor function of the endothelium using volumetric sphygmography]; published 2011 (in Russian).

59. Zairova A. R., Rogoza A. N. [Volume sphygmography today]. Medical alphabet. 2018; 4(36):8−18 (in Russian).

60. Agadzhanian N.А., Vlasova I.G., Еmakova N.V., Тоrshin V.I. [Fundamentals of human physiology. Vol.1]. Мoscow: RUDN; 2016 (in Russian). ISBN: 978-5-209-05301-9.

61. Yuda E., Shibata M., Ogata Y., Ueda N., Yambe T., Yoshizawa M., Hayano J. Pulse rate variability: a new biomarker, not a surrogate for heart rate variability. J. Physiol. Anthropol. 2020; 39(1):21. https://doi.org/10.1186/s40101-020-00233-x

62. Fedotov А.А., Akulova A.S. [Research of a pulse wave sphygmographic transducer]. Vestnik of Samara University. Aerospace and Mechanical Engineering 2015; 14(4):192−199 (in Russian). https://doi.org/10.18287/2412-7329-2015-14-4-192-199

63. Lollini S.V. [Physiology of cardiovascular system]. Vitebsk; 2007 (in Russian). ISBN: 978-985-425-843-0. Available at: https://rep.vsu.by/handle/123456789/1925

64. Brin V.B., Zakharov Yu.M., Mazing Yu.A., Nedospasov V.O., Pyatin V.F., Tkachenko B.I. [Normal physiology: textbook]. 3rd edition. Мoscow: GEOTAR-Media; 2016 (in Russian). ISBN: 978-5-9704-3664-6. Available at: http://www.studentlibrary.ru/book/ISBN9785970436646.html

65. Volkov Yu.N., Bolshov V.М., Singaevskiy S.B., Zemtsovskiy E.V., Guseinov B.А. [Comprehensive assessment of the functional state of the circulatory and respiratory systems by integral rheography of the body: methodological recommendations]. Мoscow; 1989 (in Russian).

66. Ubaydullaev A.M., Karimov D.S., Yakimova M.A. [The main research methods in the diagnosis of respiratory diseases]. Tashkent: Meditsina; 1985 (in Russian).

67. Revenko S.V. [Rheography: Harmonic perspectives]. Neuromuscular Diseases 2012; (4):8−18 (in Russian).


Review

For citations:


Garanin A.A., Rubanenko A.O., Shipunov I.D., Rogova V.S. Contact methods for registering respiratory rate: opportunities and perspectives. Bulletin Physiology and Pathology of Respiration. 2023;(89):159-173. (In Russ.) https://doi.org/10.36604/1998-5029-2023-89-159-173

Views: 241


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-5029 (Print)