Contact methods for registering respiratory rate: opportunities and perspectives
https://doi.org/10.36604/1998-5029-2023-89-159-173
Abstract
Introduction. Respiratory rate is known to be one of the most important indicators reflecting the vital functions of a person. An increase in respiratory rate can be found in many diseases and pathological conditions, for example, in chronic obstructive pulmonary disease, pneumonia, bronchial asthma, myocardial infarction, heart failure, anaemia, etc. Due to the active introduction of telemedicine monitoring into clinical practice, the measurement of the abovementioned indicator is particularly relevant for the purpose of early detection and prevention of complications of chronic non-infectious diseases, as well as dynamic monitoring of the condition of patients in both inpatient and outpatient settings.
Aim. To search and update information about existing and promising developments for the control of respiratory rate based on different physical principles.
Materials and methods. For this review we used databases PubMed, Scopus, MedLine and eLIBRARY. The following keywords were used for the search: “respiratory rate”, “contact”, “measurement”, “sensor”.
Results. Contact methods for measuring respiratory rate include a wide range of sensors based on various physical principles. All types of sensors have their own application, but also they have some drawbacks. In order to achieve maximum accuracy of respiratory rate monitoring, it is necessary to carefully assess the conditions in which the patient is located, selecting the most appropriate technological solutions for them. Probably, complex systems, including several different sensors, are able to overcome many shortcomings. In addition, the development of information analysis methods, machine learning and artificial intelligence technologies can increase the sensitivity and accuracy of methods of measuring respiratory rate, reducing the frequency of bias associated with various artefacts.
Conclusion. Thus, technological development opens up wide opportunities for long-term monitoring of vital functions, prevention and timely response to adverse events.
About the Authors
A. A. GaraninRussian Federation
Andrey A. Garanin, MD, PhD (Med.), Director of Scientific and Practical Centre of Distant Medicine, Clinics
89 Chapaevskaya Str., Samara, 443099
A. O. Rubanenko
Russian Federation
Anatoliy O. Rubanenko, MD, PhD (Med.), Associate Professor of Propaedeutic Therapy Department
89 Chapaevskaya Str., Samara, 443099
I. D. Shipunov
Russian Federation
Ivan D. Shipunov, MD, Doctor of Medical Prevention, Scientific and Practical Centre of Distant Medicine, Clinics
89 Chapaevskaya Str., Samara, 443099
V. S. Rogova
Russian Federation
Valeriya S. Rogova, MD, Doctor of Medical Prevention, Scientific and Practical Centre of Distant Medicine, Clinics
89 Chapaevskaya Str., Samara, 443099
References
1. Folke M., Cernerud L., Ekström M., Hök B. Critical review of non-invasive respiratory monitoring in medical care. Med. Biol. Eng. Comput. 2003; 41(4):377–383. https://doi.org/10.1007/BF02348078
2. AL-Khalidi F. Q., Saatchi R., Burke D., Elphick H., Tan S. Respiration rate monitoring methods: A review. Pediatr. Pulmonol. 2011; 46(6):523–529. https://doi.org/10.1002/ppul.21416
3. Schena E., Massaroni C., Saccomandi P., Cecchini S. Flow measurement in mechanical ventilation: a review. Med. Eng. Phys. 2015; 37(3):257–264. https://doi.org/10.1016/j.medengphy.2015.01.010
4. Stocks J., Sly P.D., Tepper R.S., Morgan W.J. Infant Respiratory Function Testing. John Wiley & Sons: Hoboken. NJ. USA; 1996.
5. Lilly J.C. Flow meter for recording respiratory flow of human subjects. Methods Med. Res. 1950; 2:113–121.
6. Tardi G., Massaroni C., Saccomandi P., Schena E. Experimental assessment of a variable orifice flowmeter for respiratory monitoring. J. Sens. 2015; 7:1–7. https://doi.org/10.1155/2015/752540
7. Schena E., Saccomandi P., Silvestri S. A high sensitivity fiber optic macro-bend based gas flow rate transducer for low flow rates: theory, working principle, and static calibration. Rev. Sci. Instrum. 2013; 84(2):024301. https://doi.org/10.1063/1.4793227
8. Hoppe P. Temperatures of expired air under varying climatic conditions. Int. J. Biometeorol. 1981; 25:127–132. https://doi.org/10.1007/BF02184460
9. Suzuki S., Matsui T., Kawahara H., Ichiki H., Shimizu J., Kondo Y., Gotoh S., Yura H., Takase B., Ishihara M. A non-contact vital sign monitoring system for ambulances using dual-frequency microwave radars. Med. Biol. Eng. Comput. 2009; 47(1):101–105. https://doi.org/10.1007/s11517-008-0408-x
10. Storck K., Karlsson M., Ask P., Loyd D. Heat transfer evaluation of the nasal thermistor technique. IEEE Trans Biomed Eng. 1996; 43(12):1187–1191. https://doi.org/10.1109/10.544342
11. Lim S., Park S.H., Ahn S.D., Suh Y., Shin S.S., Lee S.W., Kim J.H., Choi E.K., Yi B.Y., Kwon S.I., Kim S., Jeung T.S. Guiding curve based on the normal breathing as monitored by thermocouple for regular breathing. Med. Phys. 2007; 34(11):4514–4518. https://doi.org/10.1118/1.2795829
12. Krehel M., Schmid M., Rossi R.M., Boesel L.F., Bona G.L., Scherer L.J. An optical fibre-based sensor for respiratory monitoring. Sensors (Basel) 2014; 14(7):13088–131101. https://doi.org/10.3390/s140713088
13. Branson R.D., Gentile M.A. Is humidification always necessary during noninvasive ventilation in the hospital? Respir. Care 2010; 55(2):209–216. PMID: 20105346.
14. Farahani H., Wagiran R., Hamidon M.N. Humidity Sensors Principle, Mechanism, and Fabrication Technologies: A Comprehensive Review. Sensors 2014; 14(5):7881–7939. https://doi.org/10.3390/s140507881
15. Kano S., Kim K., Fujii M. Fast-Response and Flexible Nanocrystal-Based Humidity Sensor for Monitoring Human Respiration and Water Evaporation on Skin. ACS Sens. 2017; 2(6):828–833. https://doi.org/10.1021/acssensors.7b00199
16. Kano S., Dobashi Y., Fujii M. Silica Nanoparticle-Based Portable Respiration Sensor for Analysis of Respiration Rate, Pattern, and Phase During Exercise. IEEE Sensors Letters. 2017; 2(1):1–4. https://doi.org/10.1109/LSENS.2017.2787099
17. Zaretskiy A.P., Mityagin K.S., Tarasov V.S., Moroz D.N. [The respiratory rate estimation for a patient based on photoplethysmography data]. Trudy Moskovskogo fiziko-tekhnicheskogo instituta (natsional'nogo issledovatel'skogo universiteta) = Proceedings of Moscow Institute of Physics and Technology 2019; 11(3):61–69 (in Russian).
18. Seifi S., Khatony A., Moradi G., Abdi A., Najafi F. Accuracy of pulse oximetry in detection of oxygen saturation in patients admitted to the intensive care unit of heart surgery: comparison of finger, toe, forehead and earlobe probes. BMC Nurs. 2018; 17:15. https://doi.org/10.1186/s12912-018-0283-1
19. Castaneda D., Esparza A., Ghamari M., Soltanpur C., Nazeran H. A review on wearable photoplethysmography sensors and their potential future applications in health care. Int. J. Biosens. Bioelectron. 2018; 4(4):195–202. https://doi.org/10.15406/ijbsbe.2018.04.00125
20. García-López I., Pramono R.X.A., Rodriguez-Villegas E. Artifacts classification and apnea events detection in neck photoplethysmography signals. Med Biol Eng Comput. 2022; 60:3539–3554. https://doi.org/10.1007/s11517-022-02666-1
21. Mingxu P., Imtiaz S.A., Rodriguez-Villegas E. Pulse oximetry in the neck - a proof of concept. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2017:877–880. https://doi.org/10.1109/EMBC.2017.8036964
22. Garcia-Lopez I., Imtiaz S.A., Rodriguez-Villegas E. Characterization Study of Neck Photoplethysmography. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2018:4355–4358. https://doi.org/10.1109/EMBC.2018.8513247
23. Rogers B., Schaffarczyk M., Gronwald T. Estimation of Respiratory Frequency in Women and Men by Kubios HRV Software Using the Polar H10 or Movesense Medical ECG Sensor during an Exercise Ramp. Sensors (Basel) 2022; 22(19):7156. https://doi.org/10.3390/s22197156
24. Berntson G.G., Cacioppo J.T., Quigley K.S. Respiratory sinus arrhythmia: autonomic origins, physiological mechanisms, and psychophysiological implications. Psychophysiology 1993; 30(2):183–196. https://doi.org/10.1111/j.1469-8986.1993.tb01731.x
25. Helfenbein E., Firoozabadi R., Chien S., Carlson E., Babaeizadeh S. Development of three methods for extracting respiration from the surface ECG: a review. J. Electrocardiol. 2014; 47(6):819−825. https://doi.org/10.1016/j.jelectrocard.2014.07.020
26. Chi Y.M., Jung T.P., Cauwenberghs G. Dry-contact and noncontact biopotential electrodes: methodological review. IEEE Rev. Biomed. Eng. 2010; 3:106–119. https://doi.org/10.1109/RBME.2010.2084078
27. Alikhani I., Noponen K., Hautala A., Ammann R., Seppänen T. Spectral fusion-based breathing frequency estimation; experiment on activities of daily living. BioMed. Eng. OnLine. 2018; 17(1):99. https://doi.org/10.1186/s12938-018-0533-1
28. Andreozzi E., Centracchio J., Punzo V., Esposito D., Polley C., Gargiulo G.D., Bifulco P. Respiration Monitoring via Forcecardiography Sensors. Sensors (Basel) 2021; 21(12):3996. https://doi.org/10.3390/s21123996
29. Lu X., Azevedo Coste C., Nierat M.-C., Renaux S., Similowski T., Guiraud D. Respiratory Monitoring Based on Tracheal Sounds: Continuous Time-Frequency Processing of the Phonospirogram Combined with Phonocardiogram-Derived Respiration. Sensors (Basel) 2021; 21:99. https://doi.org/10.3390/s21010099
30. Eisenberg M.E., Givony D., Levin R. Acoustic respiration rate and pulse oximetry-derived respiration rate: a clinical comparison study. J. Clin. Monit. Comput. 2020; 34:139–146. https://doi.org/10.1007/s10877-018-0222-4
31. Datsok O.M., Vitanova S.A. [Processing a phonocardiographical signal on the basis of wavelet technologies]. Herald of the National Technical University "KhPI". Subject issue: Information Science and Modelling 2008; (24):36−41 (in Russian).
32. Abbasi-Kesbi R., Valipour A., Imani K. Cardiorespiratory system monitoring using a developed acoustic sensor. Healthcare Technol. Lett. 2018; 5(1):7–12. https://doi.org/10.1049/htl.2017.0012
33. Janssens J.P., Cantero C., Pasquina P., Georges M., Rabec C. Monitoring Long Term Noninvasive Ventilation: Benefits, Caveats and Perspectives. Front. Med. (Lausanne). 2022; 9:874523. https://doi.org/10.3389/fmed.2022.874523
34. Ando H., Ashcroft-Kelso H., Halhead R., Chakrabarti B., Young C. A., Cousins R., Angus R. M. Experience of telehealth in people with motor neurone disease using noninvasive ventilation. Disabil. Rehabil. Assist. Technol. 2019; 16(5):490–496. https://doi.org/10.1080/17483107.2019.1659864
35. Janssens J.P., Borel J.C., Pépin J.L., groupe SomnoVNI. Nocturnal monitoring of home non-invasive ventilation: the contribution of simple tools such as pulse oximetry, capnography, built-in ventilator software and autonomic markers of sleep fragmentation. Thorax 2011; 66(5):438−445. https://doi.org/10.1136/thx.2010.139782
36. Bergese S.D., Mestek M.L., Kelley S.D., McIntyre R. Jr., Uribe A.A., Sethi R., Watson J.N., Addison P.S. Multicenter Study Validating Accuracy of a Continuous Respiratory Rate Measurement Derived From Pulse Oximetry: A Comparison With Capnography. Anesth. Analg. 2017; 124(4):1153−1159. https://doi.org/10.1213/ANE.0000000000001852
37. Hutchison R., Rodriguez L. Capnography and Respiratory Depression. AJN, American Journal of Nursing 2008; 108(2):35–39. https://doi.org/10.1097/01.naj.0000310329.55432.9f
38. Khanna A.K, Bergese S.D, Jungquist C.R, Morimatsu H., Uezono S., Lee S., Ti L.K., Urman R.D., McIntyre R. Jr., Tornero C., Dahan A., Saager L., Weingarten T.N., Wittmann M., Auckley D., Brazzi L., Le Guen M., Soto R., Schramm F., Ayad S., Kaw R., Di Stefano P., Sessler D.I., Uribe A., Moll V., Dempsey S.J., Buhre W., Overdyk F.J. Prediction of Opioid-Induced Respiratory Depression on Inpatient Wards Using Continuous Capnography and Oximetry: An International Prospective, Observational Trial. Anesth. Analg. 2020; 131(4):1012−1024. https://doi.org/10.1213/ANE.0000000000004788
39. Hamdani S.T.A., Fernando A. The Application of a Piezo-Resistive Cardiorespiratory Sensor System in an Automobile Safety Belt. Sensors 2015; 15(4):7742−7753. https://doi.org/10.3390/s150407742
40. Atalay O., Kennon W.R., Demirok E. Weft-Knitted Strain Sensor for Monitoring Respiratory Rate and Its ElectroMechanical Modeling. IEEE Sensors Journal 2015; 15(1):110−112. https://doi.org/10.1109/JSEN.2014.2339739
41. Paradiso R., Loriga G., Taccini N. A wearable health care system based on knitted integrated sensors. IEEE Transactions on Information Technology in Biomedicine 2005; 9(3):337−344. https://doi.org/10.1109/TITB.2005.854512
42. Zakeri V., Akhbardeh A., Alamdari N., Fazel-Rezai R., Paukkunen M., Tavakolian K. Analyzing Seismocardiogram Cycles to Identify the Respiratory Phases. IEEE Trans. Biomed. Eng. 2017; 64(8):1786−1792. https://doi.org/10.1109/TBME.2016.2621037
43. Tavakolian K., Vaseghi A., Kaminska B. Improvement of ballistocardiogram processing by inclusion of respiration information. Physiol. Meas. 2008; 29(7):771−781. https://doi.org/10.1088/0967-3334/29/7/006
44. Balali P., Rabineau J., Hossein A., Tordeur C., Debeir O., van de Borne P. Investigating Cardiorespiratory Interaction Using Ballistocardiography and Seismocardiography-A Narrative Review. Sensors (Basel) 2022; 22(23):9565. https://doi.org/10.3390/s22239565
45. Weichao Zh., Hongbo N., Xingshe Zh., Yalong S., Tianben W. Identifying sleep apnea syndrome using heart rate and breathing effort variation analysis based on ballistocardiography. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2015:4536−4539. https://doi.org/10.1109/EMBC.2015.7319403
46. Huysmans D., Borzée P., Testelmans D., Buyse B., Willemen T., Huffel S.V., Varon C. Evaluation of a Commercial Ballistocardiography Sensor for Sleep Apnea Screening and Sleep Monitoring. Sensors (Basel) 2019; 19(9):2133. https://doi.org/10.3390/s19092133
47. Di Rienzo M., Vaini E., Lombardi P. An algorithm for the beat-to-beat assessment of cardiac mechanics during sleep on Earth and in microgravity from the seismocardiogram. Sci. Rep. 2017; 7(1):15634. https://doi.org/10.1038/s41598-017-15829-0
48. Castiglioni P., Meriggi P., Rizzo F., Vaini E., Faini A., Parati G., Di Rienzo M. Seismocardiography while sleeping at high altitude. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2012:3793−3796. https://doi.org/10.1109/EMBC.2012.6346793
49. Tafur E., Cohen L.S., Levine H.D. (1964). The Normal Apex Cardiogram: Its Temporal Relationship to Electrical, Acoustic, and Mechanical Cardiac Events. Circulation 1964; 30(3):381–391. https://doi.org/10.1161/01.cir.30.3.381
50. Fatenkov V.N., Fatenkov О.V. [New in the biomechanics of the heart, arteries and lesser circulation circuit]. Samara: As Gard; 2012 (in Russian). ISBN: 978-5-4259-0173-6.
51. Kozinskiy N.A., Lyusov V.A., Stranin V.G. [Apex cardiography in silent myocardial ischemia diagnostics]. Russian Journal of Cardiology 2004; (4):69−73 (in Russian).
52. Yuzbashev Z.Yu., Mayskova E.A. [Examination methods of the heart based on the registration of low-frequency vibrations of the precordial zone and their diagnostic potentials and perspectives]. Scientific Review. Medical Sciences. 2017; (5):74−94 (in Russian).
53. [The Great Medical Encyclopedia]. 3rd edition (in Russian). Vol.15. Available at: https://бмэ.орг/index.php/МЕХАНОКАРДИОГРАФИЯ
54. Oranskii I.E. [Acceleration Kinetocardiography]. Мoscow: Meditsina; 1973 (in Russian). ISBN: 978-00-1370232- 0.
55. Utkina A.V., Izotova A.G., Litvinova N.A. [Algorithm of respiration rate estimation according to ECG signal] Modern Science 2020; (5-1):415−421 (in Russian).
56. Remizova N.M. [Dynamics of temporal and spectral characteristics of QT interval of ECG when changing the mode and rate of breathing]. I. Yakovlev Chuvash State Pedagogical University Bulletin 2016; (3):18−24 (in Russian).
57. Massaroni C., Nicolò A., Lo Presti D., Sacchetti M., Silvestri S., Schena E. Contact-Based Methods for Measuring Respiratory Rate. Sensors (Basel) 2019; 19(4):908. https://doi.org/10.3390/s19040908
58. Rogoza A.N., Zairova A.R., Oshhepkova E.V. Patent 2428924 RU. [A method for assessing the vasomotor function of the endothelium using volumetric sphygmography]; published 2011 (in Russian).
59. Zairova A. R., Rogoza A. N. [Volume sphygmography today]. Medical alphabet. 2018; 4(36):8−18 (in Russian).
60. Agadzhanian N.А., Vlasova I.G., Еmakova N.V., Тоrshin V.I. [Fundamentals of human physiology. Vol.1]. Мoscow: RUDN; 2016 (in Russian). ISBN: 978-5-209-05301-9.
61. Yuda E., Shibata M., Ogata Y., Ueda N., Yambe T., Yoshizawa M., Hayano J. Pulse rate variability: a new biomarker, not a surrogate for heart rate variability. J. Physiol. Anthropol. 2020; 39(1):21. https://doi.org/10.1186/s40101-020-00233-x
62. Fedotov А.А., Akulova A.S. [Research of a pulse wave sphygmographic transducer]. Vestnik of Samara University. Aerospace and Mechanical Engineering 2015; 14(4):192−199 (in Russian). https://doi.org/10.18287/2412-7329-2015-14-4-192-199
63. Lollini S.V. [Physiology of cardiovascular system]. Vitebsk; 2007 (in Russian). ISBN: 978-985-425-843-0. Available at: https://rep.vsu.by/handle/123456789/1925
64. Brin V.B., Zakharov Yu.M., Mazing Yu.A., Nedospasov V.O., Pyatin V.F., Tkachenko B.I. [Normal physiology: textbook]. 3rd edition. Мoscow: GEOTAR-Media; 2016 (in Russian). ISBN: 978-5-9704-3664-6. Available at: http://www.studentlibrary.ru/book/ISBN9785970436646.html
65. Volkov Yu.N., Bolshov V.М., Singaevskiy S.B., Zemtsovskiy E.V., Guseinov B.А. [Comprehensive assessment of the functional state of the circulatory and respiratory systems by integral rheography of the body: methodological recommendations]. Мoscow; 1989 (in Russian).
66. Ubaydullaev A.M., Karimov D.S., Yakimova M.A. [The main research methods in the diagnosis of respiratory diseases]. Tashkent: Meditsina; 1985 (in Russian).
67. Revenko S.V. [Rheography: Harmonic perspectives]. Neuromuscular Diseases 2012; (4):8−18 (in Russian).
Review
For citations:
Garanin A.A., Rubanenko A.O., Shipunov I.D., Rogova V.S. Contact methods for registering respiratory rate: opportunities and perspectives. Bulletin Physiology and Pathology of Respiration. 2023;(89):159-173. (In Russ.) https://doi.org/10.36604/1998-5029-2023-89-159-173