Effect of capsaicin on monocyte differentiation in patients with chronic obstructive pulmonary disease
https://doi.org/10.36604/1998-5029-2024-93-25-37
Abstract
Introduction. It is known that monocytes and derived macrophages play an important role in the development of chronic obstructive pulmonary disease (COPD). Previously, we found that cigarette smoke-sensitive TRPV1 channels have higher expression on monocytes and macrophages of COPD patients.
Aim. To investigate the effect of chronic TRPV1 activation on the differentiation of monocytes into macrophages in vitro.
Materials and methods. The study included 11 patients with COPD and 7 healthy non-smoking volunteers (control). Monocytes were obtained from peripheral blood mononuclear cells by plastic adhesion. Cells were cultured for 10 days in the presence of granulocytemacrophage colony-stimulating factor (GM-CSF) or GM-CSF and the TRPV1 agonist capsaicin. On the 11th day, the cells were stimulated with lipopolysaccharides (LPS). Expression of the genes encoding the transcription factors STAT1, STAT6, IRF3, JUN, MAF, RELA, cytokines IL1B, IL6, IL8, and three reference genes B2M, RACK1 and HPRT1 was assessed by quantitative PCR with reverse transcription.
Results. Initially, macrophages of COPD patients differentiated in the presence of GM-CSF had higher expression of STAT1 (2.98-fold, p=0.03) and JUN (1.6-fold, p=0.02). LPS stimulation was accompanied by upregulation of IRF3 (4.3-fold, p=0.04), RELA (1.3-fold, p=0.05) and interleukin genes. Under the action of LPS COPD macrophages had 3.2-fold higher expression of IRF3 as compared to the control (p=0.05). Capsaicin also caused upregulation of IRF3 in cells from COPD patients, thus the expression of this factor became 3.2-fold higher than in the control group (p=0.03). Differentiation with capsaicin sensitized macrophages to LPS. Under these conditions JUN expression increased both in COPD patients (1.8-fold, p=0.01) and in the control group (2.2-fold, p=0.02) as compared with cells differentiated with GM-CSF alone.
Conclusion. The obtained results indicate that in resting state macrophages from COPD patients are mostly characterized by a proinflammatory M1 polarization. LPS probably leads to an additional polarization towards M2b phenotype, when compared with the control, as indicated by an increase in the level of IRF3 transcripts. Capsaicin also promotes M2b polarization of COPD macrophages and may enhance the inflammatory response of cells to LPS.
About the Authors
D. E. NaumovRussian Federation
Denis E. Naumov, PhD (Med.), Head of Laboratory of Molecular and Translational Research
22 Kalinina Str., Blagoveshchensk, 675000
D. A. Gassan
Russian Federation
Dina A. Gassan, PhD (Med.), Head of Laboratory of Mechanisms of Virus-Associated Developmental Pathologies
22 Kalinina Str., Blagoveshchensk, 675000
O. O. Kotova
Russian Federation
Olesya O. Kotova, PhD (Med.), Senior Staff Scientist, Laboratory of Mechanisms of Virus-Associated Developmental Pathologies
22 Kalinina Str., Blagoveshchensk, 675000
E. G. Sheludko
Russian Federation
Elizaveta G. Sheludko, PhD (Med.), Staff Scientist, Laboratory of Molecular and Translational Research
22 Kalinina Str., Blagoveshchensk, 675000
Y. G. Gorchakova
Russian Federation
Yana G. Gorchakova, Junior Staff Scientist, Laboratory of Mechanisms of Virus-Associated Developmental Pathologies
22 Kalinina Str., Blagoveshchensk, 675000
I. Yu. Sugaylo
Russian Federation
Ivana Yu. Sugaylo, PhD, Staff Scientist, Laboratory of Molecular and Translational Research
22 Kalinina Str., Blagoveshchensk, 675000
T. A. Maltseva
Russian Federation
Tatiana A. Maltseva, PhD (Med.), Staff Scientist, Laboratory of Molecular and Translational Research
22 Kalinina Str., Blagoveshchensk, 675000
References
1. Barnes P.J. Alveolar macrophages as orchestrators of COPD. COPD 2004; 1(1):59–70. https://doi.org/10.1081/COPD-120028701
2. Baßler K., Fujii W., Kapellos T.S., Dudkin E., Reusch N., Horne A., Reiz B., Luecken M.D., Osei-Sarpong C., Warnat- Herresthal S., Bonaguro L., Schulte-Schrepping J., Wagner A., Günther P., Pizarro C., Schreiber T., Knoll R., Holsten L., Kröger C., De Domenico E., Becker M., Händler K., Wohnhaas C.T., Baumgartner F., Köhler M., Theis H., Kraut M., Wadsworth M.H. 2nd, Hughes T.K., Ferreira H.J., Hinkley E., Kaltheuner I.H., Geyer M., Thiele C., Shalek A.K., Feißt A., Thomas D., Dickten H., Beyer M., Baum P., Yosef N., Aschenbrenner A.C., Ulas T., Hasenauer J., Theis F.J., Skowasch D., Schultze J.L. Alveolar macrophages in early stage COPD show functional deviations with properties of impaired immune activation. Front. Immunol. 2022; 13:917232. https://doi.org/10.3389/fimmu.2022.917232
3. Wohnhaas C.T., Baßler K., Watson C.K., Shen Y., Leparc G.G., Tilp C., Heinemann F., Kind D., Stierstorfer B., Delić D., Brunner T., Gantner F., Schultze J.L., Viollet C., Baum P. Monocyte-derived alveolar macrophages are key drivers of smoke-induced lung inflammation and tissue remodeling. Front. Immunol. 2024; 15:1325090. https://doi.org/10.3389/fimmu.2024.1325090
4. Naumov D.E., Sugaylo I.Yu., Kotova O.O., Gassan D.A., Gorchakova Y.G., Sheludko E.G. Expression of transient receptor potential channels on peripheral blood leukocytes of patients with chronic obstructive pulmonary disease. Sibirskiy zhurnal klinicheskoy i eksperimental'noy meditsiny = Siberian Journal of Clinical and Experimental Medicine 2023; 38(4):125–132 (in Russian). https://doi.org/10.29001/2073-8552-2023-659
5. Naumov D.E., Sugaylo I.Yu., Kotova O.O., Gassan D.A., Gorchakova Ya.G., Maltseva T.A. Comparative characteristics of TRP channels expression levels on the macrophages of patients with chronic obstructive pulmonary disease. Bûlleten' fiziologii i patologii dyhaniâ = Bulletin Physiology and Pathology of Respiration 2022; (85):37–46 (in Russian). https://doi.org/10.36604/1998-5029-2022-85-37-46
6. Kunde D.A., Yingchoncharoen J., Jurković S., Geraghty D.P. TRPV1 mediates capsaicin-stimulated metabolic activity but not cell death or inhibition of interleukin-1β release in human THP-1 monocytes. Toxicol. Appl. Pharmacol. 2018; 360:9–17. https://doi.org/10.1016/j.taap.2018.09.025
7. Lv Z., Xu X., Sun Z., Yang Y.X., Guo H., Li J., Sun K., Wu R., Xu J., Jiang Q., Ikegawa S., Shi D. TRPV1 alleviates osteoarthritis by inhibiting M1 macrophage polarization via Ca2+/CaMKII/Nrf2 signaling pathway. Cell Death Dis. 2021; 12(6):504. https://doi.org/10.1038/s41419-021-03792-8
8. Li Y., Guo X., Zhan P., Huang S., Chen J., Zhou Y., Jiang W., Chen L., Lin Z. TRPV1 regulates proinflammatory properties of M1 macrophages in periodontitis via NRF2. Inflammation 2024; https://doi.org/10.1007/s10753-024-02024-3
9. Vašek D., Fikarová N., Marková V.N., Honc O., Pacáková L., Porubská B., Somova V., Novotný J., Melkes B., Krulová M. Lipopolysaccharide pretreatment increases the sensitivity of the TRPV1 channel and promotes an anti-inflammatory phenotype of capsaicin-activated macrophages. J. Inflamm. (Lond) 2024; 21(1):17. https://doi.org/10.1186/s12950-024-00391-0
10. Wang M., Zhang Y., Xu M., Zhang H., Chen Y., Chung K.F., Adcock I.M., Li F. Roles of TRPA1 and TRPV1 in cigarette smoke -induced airway epithelial cell injury model. Free Radic. Biol. Med. 2019; 134:229–238. https://doi.org/10.1016/j.freeradbiomed.2019.01.004
11. Benítez-Angeles M., Morales-Lázaro S.L., Juárez-González E., Rosenbaum T. TRPV1: structure, endogenous agonists, and mechanisms. Int. J. Mol. Sci. 2020; 21(10):3421. https://doi.org/10.3390/ijms21103421
12. Kievit B., Johnstone A.D., Gibon J., Barker P.A. Mitochondrial Reactive oxygen species mediate activation of TRPV1 and calcium entry following peripheral sensory axotomy. Front. Mol. Neurosci. 2022; 15:852181. https://doi.org/10.3389/fnmol.2022.852181
13. Li H., Jiang T., Li M.Q., Zheng X.L., Zhao G.J. Transcriptional regulation of macrophages polarization by MicroRNAs. Front. Immunol. 2018; 9:1175. https://doi.org/10.3389/fimmu.2018.01175
14. Guinn Z.P., Petro T.M. Interferon regulatory factor 3 plays a role in macrophage responses to interferon-γ. Immunobiology 2019; 224(4):565–574. https://doi.org/10.1016/j.imbio.2019.04.004
15. Yanai H., Chiba S., Hangai S., Kometani K., Inoue A., Kimura Y., Abe T., Kiyonari H., Nishio J., Taguchi-Atarashi N., Mizushima Y., Negishi H., Grosschedl R., Taniguchi T. Revisiting the role of IRF3 in inflammation and immunity by conditional and specifically targeted gene ablation in mice. Proc. Natl. Acad. Sci. U S A 2018; 115(20):5253–5258. https://doi.org/10.1073/pnas.1803936115
16. Wang L.X., Zhang S.X., Wu H.J., Rong X.L., Guo J. M2b macrophage polarization and its roles in diseases. J. Leukoc. Biol. 2019; 106(2):345–358. https://doi.org/10.1002/JLB.3RU1018-378RR
17. Tugal D., Liao X., Jain M.K. Transcriptional control of macrophage polarization. Arterioscler. Thromb. Vasc. Biol. 2013; 33(6):1135–1144. https://doi.org/10.1161/ATVBAHA.113.301453
18. Srivastava M., Saqib U., Naim A., Roy A., Liu D., Bhatnagar D., Ravinder R., Baig M.S. The TLR4-NOS1-AP1 signaling axis regulates macrophage polarization. Inflamm. Res. 2017; 66(4):323–334. https://doi.org/10.1007/s00011-016-1017-z
19. Cao S., Liu J., Song L., Ma X. The protooncogene c-Maf is an essential transcription factor for IL-10 gene expression in macrophages. J. Immunol. 2005; 174(6):3484–3492. https://doi.org/10.4049/jimmunol.174.6.3484
20. Mussbacher M., Derler M., Basílio J., Schmid J.A. NF-κB in monocytes and macrophages – an inflammatory master regulator in multitalented immune cells. Front. Immunol. 2023; 14:1134661. https://doi.org/10.3389/fimmu.2023.1134661
21. Ishii T., Hosoki K., Nikura Y., Yamashita N., Nagase T., Yamashita N. IFN regulatory factor 3 potentiates emphysematous aggravation by lipopolysaccharide. J. Immunol. 2017; 198(9):3637–3649. https://doi.org/10.4049/jimmunol.1601069
22. Bok E., Chung Y.C., Kim K.S., Baik H.H., Shin W.H., Jin B.K. Modulation of M1/M2 polarization by capsaicin contributes to the survival of dopaminergic neurons in the lipopolysaccharide-lesioned substantia nigra in vivo. Exp. Mol. Med. 2018; 50(7):1–14. https://doi.org/10.1038/s12276-018-0111-4
23. Li J., Wang H., Zhang L., An N., Ni W., Gao Q., Yu Y. Capsaicin affects macrophage anti-inflammatory activity via the MAPK and NF-κB signaling pathways. Int. J. Vitam. Nutr. Res. 2023; 93(4):289–297. https://doi.org/10.1024/0300-9831/a000721
24. Braga Ferreira L.G., Faria J.V., Dos Santos J.P.S., Faria R.X. Capsaicin: TRPV1-independent mechanisms and novel therapeutic possibilities. Eur. J. Pharmacol. 2020; 887:173356. https://doi.org/10.1016/j.ejphar.2020.173356
Review
For citations:
Naumov D.E., Gassan D.A., Kotova O.O., Sheludko E.G., Gorchakova Y.G., Sugaylo I.Yu., Maltseva T.A. Effect of capsaicin on monocyte differentiation in patients with chronic obstructive pulmonary disease. Bulletin Physiology and Pathology of Respiration. 2024;(93):25-37. (In Russ.) https://doi.org/10.36604/1998-5029-2024-93-25-37