Long-term consequences of the functional state of the respiratory system after SARS-CoV-2-associated lung damage
https://doi.org/10.36604/1998-5029-2024-93-48-59
Abstract
Aim. To study the dynamics of respiratory system function in patients without a history of bronchopulmonary pathology after SARS-CoV-2 infection with virus-associated lung damage.
Materials and methods. A retrospective study was conducted on 29 patients (median age 46 [43-51] years) at two stages: visit 1 (1-4 months) and visit 2 (8-13 months) from the onset of COVID-19. Data from spirometry, bodyplethysmography, diffusion capacity test, impulse oscillometry (IOS), and chest computed tomography (CT) obtained during the acute phase of the disease (CTmax), as well as dyspnea assessed by the mMRC scale, were analyzed.
Results. The median CTmax was 75%, and 66% of patients received treatment in the intensive care unit. At visit 1, dyspnea was of mild or moderate severity. Medians of vital capacity (VC), total lung capacity (TLC), residual volume (RV), and diffusion capacity of the lungs (DLco) were reduced (<80% predicted). The median forced expiratory volume in the first second (FEV1) and IOS parameters were within normal ranges. However, increased reactance area (AX) and absolute frequency dependence of resistance (R5–R20) were found in 59% and 24% of cases, respectively. At visit 2, mild dyspnea persisted. Lung volumes were within normal limits, with statistically significant differences between visits. The median DLco was reduced at visit 1 but increased to normal at visit 2, with statistically significant differences between visits. The median IOS parameters remained within normal limits, with no statistically significant differences between visits. However, in visit 1 increased AX and (R5–R20) were observed in 59% and 24%, in visit 2 – 45% and 17% of cases, respectively, with no statistically significant differences between visits.
Conclusions. Among the long-term functional consequences of SARS-CoV-2 infection with virus-associated lung damage, decreased lung diffusion capacity (reduced DLco) and small airway dysfunction (increased AX and/or R5-R20) were noted in some patients. Impulse oscillometry should be included in the comprehensive functional assessment plan for patients after SARS-CoV-2 infection to diagnose small airway dysfunction.
Keywords
About the Authors
O. I. SavushkinaRussian Federation
Olga I. Savushkina, PhD (Biol.), Head of the Department of External Respiratory Function Research, Center for Functional Diagnostic Research
3 Gospitalnaya square, Moscow, 105229
28 Orekchovy boulevard, Moscow, 115682
I. Ts. Kulagina
Russian Federation
Irina Ts. Kulagina, PhD (Med.), Head of the Pulmonology Department
3 Gospitalnaya square, Moscow, 105229
M. M. Malashenko
Russian Federation
Maria M. Malashenko, PhD (Med.), Head of Department of Physiotherapy
3 Gospitalnaya square, Moscow, 105229
E. R. Kuzmina
Russian Federation
Ekaterina R. Kuzmina, PhD (Med), Doctor of the Department of External Respiratory Function Research, Center for Functional Diagnostic Research
3 Gospitalnaya square, Moscow, 105229
M. I. Chushkin
Russian Federation
Mikhail I. Chushkin, MD, PhD, DSc (Med.), Leading Staff Scientist of the Center for Diagnosis and Rehabilitation of Respiratory Diseases
2 Yauzskaya Alley, Moscow, 107564
E. V. Kryukov
Russian Federation
Evgeniy V. Kryukov, MD, PhD, DSc (Med.), Academician of RAS, Head of the Academy
6G Akademika Lebedeva Str., Saint-Petersburg, 194044
References
1. Vinokurov A.S., Yudin A.L. [Irreversible lung transformation resulting from damage in COVID-19 – discourses and examples of CT images]. Arkhiv” vnutrenney meditsiny = The Russian Archives of Internal Medicine 2022; 12(5):370–379 (in Russian). https://doi.org/10.20514/2226-6704-2022-12-5-370-379
2. Pogosova N.V., Paleev F.N., Ausheva A.K., Kuchiev D.T., Gaman S.A., Veselova T.N. Belkind M.B., Sokolova O.Yu., Zhetisheva R.A., Ternovoy S.K., Boytsov S.A. [Sequelae of COVID-19 at long-term follow-up after hospitalization]. Ratsional’naya farmakoterapiya v kardiologii = Rational Pharmacotherapy in Cardiology 2022; 18(2):118–126 (in Russian). https://doi.org/10.20996/1819-6446-2022-04-03
3. Kostycheva T.V., Pershukova T.N., Bikeikin A.V. [Term consequences of viral lung damage against the background of COVID-19 in military personnel]. Voenno- meditsinskiy zhurnal = The Military Medical Journal 2024; 2:44–49 (in Russian). https://doi.org/10.52424/00269050_2024_345_2_44
4. Karchevskaya N.A., Skorobogach I.M., Cherniak A.V., Migunova E.V., Leshchinskaya O.V., Kalmanova E.N., Bulanov A.I., Ostrovskaya E.A., Kostin A.I., Nikulina V.P., Kravchenko N.Iu., Belevskiy A.S., Petrikov S.S. [Long-term follow- up study of post-COVID-19 patients]. Terapevticheskii Arkhiv = Terapevticheskiy arkhiv 2022; 94(3):378–388 (in Russian). https://doi.org/ 10.26442/00403660.2022.03.201399
5. Abdullaeva G.B., Avdeev S.N., Fominykh E.V., Gordina G.S., Mustafina M.Kh. [Assessment of long-term clinical and functional changes in patients recovering from severe COVID-19-associated lung damage]. Pul’monologiya = Russian Pulmonology 2023; 33(4):461–471 (in Russian). https://doi.org/10.18093/0869-0189-2023-33-4-461-471
6. Chernyak A.V., Mustafina M.Kh., Naumenko Zh.K., Kalmanova E.N., Zykov K.A. [Dynamics of functional changes in the respiratory system after COVID-19-associated lung injury at one year after hospital discharge]. Pul’monologiya = Russian Pulmonology 2023; 33(5):611–621 (in Russian). https://doi.org/10.18093/0869-0189-2023-33-5-611-621
7. Kameneva M.Yu., Cherniak A.V., Aisanov Z.R., Avdeev S.N., Babak S.L., Belevskiy А.S., Beresten N.F., Kalmanova Е.N., Malyavin A.G., Perelman J.M., Prikhodko A.G., Struchkov P.V., Chikina S.Yu., Chushkin M.I. [Spirometry: national guidelines for the testing and interpretation of results]. Pul’monologiya = Russian Pulmonology 2023; 33(3): 307–340 (in Russian). https://doi.org/10.18093/08690189-2023-33-3-307-340
8. Wanger J., Clausen J.L., Coates A., Pedersen O.F., Brusasco V., Burgos F., Casaburi R., Crapo R., Enright P., van der Grinten C.P., Gustafsson P., Hankinson J., Jensen R., Johnson D., Macintyre N., McKay R., Miller M.R., Navajas D., Pellegrino R., Viegi G. Standardisation of the measurement of lung volumes. Eur. Respir. J. 2005; 26(3):511–522. https://doi.org/10.1183/09031936.05.00035005
9. Graham B.L., Brusasco V., Burgos F., Cooper B.G., Jensen R., Kendrick A., MacIntyre N.R., Thompson B.R., Wanger J. 2017 ERS/ATS Standards for single-breath carbon monoxide uptake in the lung. Eur. Respir. J. 2017; 49(1):1600016. https://doi.org/10.1183/13993003.00016-2016
10. Quanjer Ph.H., Tammeling G.J., Cotes J.E., Pedersen O.F., Peslin R., Yernault J-C. Lung volumes and forced ventilatory flows. Report working party standardization of lung function tests, European community for steel and coal. Official statement of the European Respiratory Society. Eur. Respir. J. Suppl. 1993; 16:5–40.
11. Cotes J.E., Chinn D.J., Quanjer P.H., Roca J., Yernault J.C. Standardization of the measurement of transfer factor (diffusing capacity). Report working party standardization of lung function tests, European community for steel and coal. Official statement of the European Respiratory Society. Eur. Respir. J. Suppl. 1993; 16:41–52.
12. Bednarek M., Grabicki M., Piorunek T., Batura-Gabryel H. Current place of impulse oscillometry in the assessment of pulmonary diseases. Respir. Med. 2020; 170:105952. https://doi.org/10.1016/j.rmed.2020.105952
13. Vogel J., Smidt U. Impulse oscillometry: analysis of lung mechanics in general practice and the clinic, epidemiological and experimental research. Frankfurt am Main; Moskau; Sennwald; Wien: Pmi-Verl.-Gruppe; 1994. ISBN: 3891193165.
14. Pisi R., Aiello M., Frizzelli A., Feci D., Aredano I., Manari G., Calzetta L., Pelà G., Chetta A. Detection of small airway dysfunction in asthmatic patients by spirometry and impulse oscillometry system. Respiration 2023; 102(7):487– 494. https://doi.org/10.1159/000531205
15. Crisafulli E., Pisi R., Aiello M., Vigna M., Tzani P., Torres A., Bertorelli G., Chetta A. Prevalence of small-airway dysfunction among COPD patients with different GOLD stages and its role in the impact of disease. Respiration 2017; 93(1):32–41. https://doi.org/10.1159/000452479
16. Galant S.P., Komarow H.D., Shin H.W., Siddiqui S., Lipworth B.J. The case for impulse oscillometry in the management of asthma in children and adults. Ann. Allergy Asthma Immunol. 2017; 118(6):664–671. https://doi.org/10.1016/j.anai.2017.04.009
17. Brashier B., Salvi S. Measuring lung function using sound waves: role of the forced oscillation technique and impulse oscillometry system. Breathe 2015; 11(1):57–65. https://doi.org/10.1183/20734735.020514
18. Huang Y., Tan C., Wu J., Chen M., Wang Z., Luo L., Zhou X., Liu X., Huang X., Yuan S., Chen C., Gao F., Huang J., Shan H., Liu J. Impact of coronavirus disease 2019 on pulmonary function in early convalescence phase. Respir. Res. 2020; 21(1):163. https://doi.org/ 10.1186/s12931-020-01429-6
19. Tamminen P., Kerimov D., Viskari H., Aittoniemi J., Syrjänen J., Lehtimäki L. Lung function during and after acute respiratory infection in COVID-19 positive and negative outpatients. Eur. Respir. J. 2022; 59(3):2102837. https://doi.org/10.1183/13993003.02837-2021
20. Lindahl A., Reijula J., Malmberg L.P., Aro M., Vasankari T., Mäkelä J. Small airway function in Finnish COVID-19 survivors. Respir. Res. 2021; 22(1):237. https://doi.org/10.1186/s12931-021-01830-9
21. Lopes A.J., Litrento P.F., Provenzano B.C., Carneiro A.S., Monnerat L.B., da Cal M.S., Ghetti A.T.A., Mafort T.T. Small airway dysfunction on impulse oscillometry and pathological signs on lung ultrasound are frequent in post-COVID- 19 patients with persistent respiratory symptoms. PLoS One 2021; 16(11):e0260679. https://doi.org/10.1371/journal.pone.0260679
22. Savushkina O.I., Cherniak A.V., Kryukov E.V., Aseeva N.A., Zaytsev A.A. [Follow-up pulmonary function of COVID-19 patients 4 months after hospital discharge]. Pul’monologiya = Russian Pulmonology 2021; 31(5):580–586 (in Russian) https://doi.org/10.18093/0869-0189-2021-31-5-580-587
23. Savushkina O.I., Astanin P.A., Nekludova G.V., Avdeev S.N., Zaytsev A.A. [The possibilities of impulse oscillometry in the diagnosis of the lung function disorders after COVID-19]. Terapevticheskii Arkhiv = Terapevticheskiy arkhiv 2023; 95(11):924–929 (in Russian). https://doi.org/10.26442/00403660.2023.11.202474
24. Fernández-de-Las-Peñas C., Rodríguez-Jiménez J., Cancela-Cilleruelo I., Guerrero-Peral A., Martín-Guerrero J.D., García-Azorín D., Cornejo-Mazzuchelli A., Hernández-Barrera V., Pellicer-Valero O.J. Post-COVID-19 symptoms 2 years after SARS-CoV-2 infection among hospitalized vs nonhospitalized patients. JAMA Netw. Open 2022; 5(11):e2242106. https://doi.org/10.1001/jamanetworkopen.2022.42106
25. Cherrez-Ojeda I., Osorio M. F., Robles-Velasco K., Calderón J.C., Cortés-Télles A., Zambrano J., Guarderas C., Intriago B., Gochicoa-Rangel L. Small airway disease in post-acute COVID-19 syndrome, a non-conventional approach in three years follow-up of a patient with long COVID: a case report. J. Med. Case Rep. 2023; 17(1):386. https://doi.org/10.1186/s13256-023-04113-7
26. Savushkina O.I., Cherniak A.V. [Methods for diagnosing dysfunction of small airways and uniformity of lung ventilation: their use after a novel coronavirus infection]. Bûlleten' fiziologii i patologii dyhaniâ = Bulletin Physiology and Pathology of Respiration 2022; (84):137–143 (in Russian). https://doi.org/10.36604/1998-5029-2022-84-137-143
Review
For citations:
Savushkina O.I., Kulagina I.Ts., Malashenko M.M., Kuzmina E.R., Chushkin M.I., Kryukov E.V. Long-term consequences of the functional state of the respiratory system after SARS-CoV-2-associated lung damage. Bulletin Physiology and Pathology of Respiration. 2024;(93):48-59. (In Russ.) https://doi.org/10.36604/1998-5029-2024-93-48-59