The role of respiratory infections in the formation of airway hyperresponsiveness in children
https://doi.org/10.36604/1998-5029-2024-93-121-131
Abstract
Airway hyperresponsiveness (AHR) is a heterogeneous and complex disorder characterized by excessive narrowing of the airways in response to various exogenous and endogenous stimuli. This article presents information from the last five years, including 50 publications from PubMed and Google Scholar, on the most common viruses that provoke the development of airway hyperresponsiveness in children, including respiratory syncytial virus, rhinovirus, metapneumovirus, influenza and parainfluenza viruses, SARS-CoV-2 coronavirus, adenovirus, and bocavirus. It describes a number of pathophysiological mechanisms by which viruses damage the respiratory epithelium and lead to the formation of infectious and post-infectious bronchial hypersensitivity. The role of hyperexpression of cytokines and inflammatory mediators in the development of AHR, especially in early childhood, is emphasized. It is shown that the inflammatory process and a balanced immune response are crucial for mitigating the severity of the disease caused by viruses. Understanding the molecular mechanisms of inflammatory reactions and the immune response to acute respiratory viral infections can help develop more effective methods for the prevention and treatment of respiratory diseases in children.
About the Authors
A. S. ManukyanRussian Federation
Aykush S. Manukyan, Postgraduate Student, Junior Staff Scientist, Laboratory of Mechanisms of Virus-Associated Developmental Pathologies
22 Kalinina Str., Blagoveshchensk, 675000
A. G. Prikhodko
Russian Federation
Аnnа G. Prikhodko, MD, PhD, DSc (Med.), Main Staff Scientist, Laboratory of Functional Research of Respiratory System
22 Kalinina Str., Blagoveshchensk, 675000
References
1. Maatta A.M., Malmberg L.P., Pelkonen A.S., Makela M.J. The link between early childhood lower airway symptoms, airway hyperresponsiveness, and school-age lung function. Ann. Allergy Asthma Immunol. 2024; 132(1):54–61.e5. https://doi.org/10.1016/j.anai.2023.10.006
2. Clementi N., Ghosh S., De Santis M., Castelli M., Criscuolo E., Zanoni I., Clementi M., Mancini N. Viral respiratory pathogens and lung injury. Clin. Microbiol. Rev. 2021; 34(3):e00103–e00120. https://doi.org/10.1128/CMR.00103-20
3. Stikker B.S., Hendriks R.W., Stadhouders R. Decoding the genetic and epigenetic basis of asthma. Allergy 2023; 78(4):940–956. https://doi.org/10.1111/all.15666
4. Koefoed H.J.L, Zwitserloot A.M., Vonk J.M., Koppelman G.H. Asthma, bronchial hyperresponsiveness, allergy and lung function development until early adulthood: a systematic literature review. Pediatr. Allergy Immunol. 2021; 32(6):1238–1254. https://doi.org/10.1111/pai.13516
5. Jenssen B.P., Walley S.C., Boykan R., Caldwell A.L., Camenga D. Protecting children and adolescents from tobacco and nicotine. Pediatrics 2023; 151(5):e2023061804. https://doi.org/10.1542/peds.2023-061804
6. Dai X., Gil G.F., Reitsma M.B., Ahmad N.S., Anderson J.A., Bisignano C., Carr S., Feldman R., Hay S.I., He J., Iannucci V., Lawlor H.R., Malloy M.J., Marczak L.B., McLaughlin S.A., Morikawa L., Mullany E.C., Nicholson S.I., O'Connell E.M., Okereke C., Sorensen R.J.D., Whisnant J., Aravkin A.Y., Zheng P., Murray C.J.L., Gakidou E. Health effects associated with exposure to secondhand smoke: a burden of proof study. Nat. Med. 2024; 28(10):2045–2055. https://doi.org/10.1038/s41591-022-01978-x
7. Hashimoto K., Maeda H., Iwasa H., Kyozuka H., Maeda R., Kume Y., Ono T., Chishiki M., Sato A., Ogata Y., Murata T., Fujimori K., Shinoki K., Nishigori H., Yasumura S., Hosoya M. Tobacco exposure during pregnancy and infections in infants up to 1 year of age: the Japan environment and children’s study. J. Epidemiol. 2023; 33(10):489–497. https://doi.org/10.2188/jea.JE20210405
8. Wang Х., Li Y., Shi T., Bont L.J., Chu H.Y., Zar H.J., Wahi-Singh B., Ma Y., Cong B., Sharland E., Riley R.D., Deng J., Figueras-Aloy J., Heikkinen T., Jones M.H., Liese J.G., Markić J., Mejias A., Nunes V.C., Resch B., Satav A., Yeo K.T., Simões E.A.F., Nair H. Global disease burden of and risk factors for acute lower respiratory infections caused by respiratory syncytial virus in preterm infants and young children in 2019: a systematic review and meta-analysis of aggregated and individual participant data. Lancet 2024; 403(10433):1241–1253. https://doi.org/10.1016/S0140-6736(24)00138-7
9. Gottlieb J. Community-acquired respiratory viruses. Curr. Opin. Organ Transplant. 2019; 24(3):311–317. https://doi.org/10.1097/MOT.0000000000000633
10. Atwell J., Chico M., Vaca M., Arévalo-Cortes A., Karron R., Cooper Ph.J. Effect of infant viral respiratory disease on childhood asthma in a non-industrialized setting. Clin. Transl. Allergy 2023; 13(8):e12291. https://doi.org/10.1002/clt2.12291
11. de Jesús Romero-Tapia S., Guzmán Priego C.G., Del-Río-Navarro B.E., Sánchez-Solis M. Advances in the Relationship between Respiratory Viruses and Asthma. J. Clin Med. 2023; 12(17):5501. https://doi.org/10.3390/jcm12175501
12. Moriyama M., Hugentobler W.J., Iwasaki A. Seasonality of respiratory viral infections. Annu. Rev. Virol. 2020; 7(1):83–101. https://doi.org/10.1146/annurev-virology-012420-022445
13. Yadav K.K., Awasthi S. Childhood pneumonia: what's unchanged, and what's new? Indian J. Pediatr. 2023; 90(7):693–699. https://doi.org/10.1007/s12098-023-04628-3
14. Martikainen M., Tossavainen T., Hannukka N., Roponen M. Pollen, respiratory viruses, and climate change: synergistic effects on human health. Environ Res. 2023; 219:115149. https://doi.org/10.1016/j.envres.2022.115149
15. Hussain S.A., Mejias A., Ramilo O., Peeples M.E., Grayson M.H. Postviral atopic airway disease: pathogenesis and potential avenues for intervention. Expert Rev. Clin. Immunol. 2019; 15(1):49–58. https://doi.org/10.1080/1744666X.2019.1541737
16. Gauvreau G.M., Bergeron C., Boulet L., Cockcroft D.W., Côté A., Davis B.E., Leigh R., Myers I., O'Byrne P.M., Sehmi R. Sounding the alarmins – the role of alarmin cytokines in asthma. Allergy 2023; 78(2):402–417. https://doi.org/10.1111/all.15609
17. Habib N, Pasha M.A., Tang D.D. Current understanding of asthma pathogenesis and biomarkers. Cells 2022; 11(17):2764. https://doi.org/10.3390/cells11172764
18. Williams T.C., Loo S., Nichol K.S., Reid A.T., Veerati P.A., Esneau C., Wark P.A.B., Grainge C.L., Knight D.A., Vincent T., Jackson C.L., Alton K., Shimkets R.A., Girkin J.L., Bartlett N.W. IL-25 blockade augments antiviral immunity during respiratory virus infection. Commun. Biol. 2022; 5(1):415. https://doi.org/10.1038/s42003-022-03367-z
19. Frey A., Lunding L.P., Ehlers J.C., Weckmann M., Zissler U.M., Wegmann M. More than just a barrier: the immune functions of the airway epithelium in asthma pathogenesis. Front. Immunol. 2020; 11:761. https://doi.org/10.3389/fimmu.2020.00761
20. Lee C.Y., Sung C.H., Wu V.C., Chang Y.C., Chang J.C., Fang Y.P., Wang N.M., Chou T.Y., Chan Y.J. Clinical characteristics and differential cytokine expression in hospitalized Taiwanese children with respiratory syncytial virus and rhinovirus bronchiolitis. J. Microbiol. Immunol. Infect. 2023; 56(2):282–291. https://doi.org/10.1016/j.jmii.2022.08.013
21. Rosas-Salazar C., Chirkova T., Gebretsadik T., Chappell J.D., Peebles Jr R.S., Dupont W.D., Jadhao S.J., Gergen P.J. Respiratory syncytial virus infection during infancy and asthma during childhood in the USA (INSPIRE): a populationbased, prospective birth cohort study. Lancet 2023; 401(10389):1669–1680. https://doi.org/10.1016/S0140-6736(23)00811-5
22. Billard M., Bont L.J. The link between respiratory syncytial virus infection during infancy and asthma during childhood. Lancet 2023; 401(10389):1632–1633. https://doi.org/10.1016/S0140-6736(23)00672-4
23. Agac A., Kolbe S.M., Ludlow M., Osterhaus Albert D.M.E., Meineke R., Rimmelzwaan G.F. Host responses to respiratory syncytial virus infection. Viruses 2023; 15(10):1999. https://doi.org/10.3390/v15101999
24. Priante E., Cavicchiolo M.E., Baraldi E. RSV infection and respiratory sequelae. Minerva Pediatr. 2018; 70(6):623– 633. https://doi.org/10.23736/S0026-4946.18.05327-6
25. Liew K.Y., Koh S.K., Hooi S.L., Lup Ng M.K., Chee H., Harith H.H., Israf D.A., Ling Tham C.L. Rhinovirus-Induced cytokine alterations with potential implications in asthma exacerbations: a systematic review and meta-analysis. Fron. Immunol. 2022; 13:782936. https://doi.org/10.3389/fimmu.2022.782936
26. Hayashi Y., Sada M., Shirai T., Okayama K., Kimura R., Kondo M., Okodo M., Tsugawa T., Ryo A., Kimura H. Rhinovirus infection and virus-induced asthma. Viruses 2022; 14(12):2616. https://doi.org/10.3390/v14122616
27. Price A.S., Kennedy J.L. T-helper 2 mechanisms involved in human rhinovirus infections and asthma. Ann. Allergy Asthma Immunol. 2022; 129(6):681–691. https://doi.org/10.1016/j.anai.2022.08.015
28. Myklebust A., Simpson M.R., Valand J., Langaas V.S., Jartti T., Døllner H., Risnes K. Bronchial reactivity and asthma at school age after early-life metapneumovirus infection. ERJ Open Res. 2024; 10(1):00832-2023. https://doi.org/10.1183/23120541.00832-2023
29. Santos L.D., Antunes K.H., Muraro S.P., de Souza G.F., da Silva A.G., de Souza Felipe J., Zanetti L.C., Czepielewski R.S., Magnus K., Scotta M., Mattiello R., Maito F., de Souza A.P.D., Weinlich R., Ramirez Vinolo M.A., Porto B.N. TNFmediated alveolar macrophage necroptosis drives disease pathogenesis during respiratory syncytial virus infection. Eur. Respir. J. 2021; 57(6). Article:2003764. https://doi.org/10.1183/13993003.03764-2020
30. Xiang W., Li L., Wang B., Ali A.F., Li W. Profiles and predictive value of cytokines in children with human metapneumovirus pneumonia. Virol. J. 2022; 19:214. https://doi.org/10.1186/s12985-022-01949-1
31. Wu G., Zhang Y., Niu L., Hu Y., Yang Y., Zhaoa Y. Interleukin-1β promotes human metapneumovirus replication via activating the cGAS-STING pathway. Virus. Res. 2024; 343:199344. https://doi.org/10.1016/j.virusres.2024.199344
32. Cioccarelli C., Sanchez-Rodriguez R., Angioni R., Venegas F.C., Bertoldi N., Munari F., Cattelan A., Molon B., Viola A. IL1beta promotes TMPRSS2 expression and SARS-CoV-2 cell entry through the p38 MAPK-GATA2 axis. Front. Immunol. 2021; 12:781352. https://doi.org/10.3389/fimmu.2021.781352
33. Castro I.A., Yang Y., Gnazzo V., Kim D., Dyken S.J.V., López C.B. Murine parainfluenza virus persists in lung innate immune cells sustaining chronic lung pathology. bioRxiv [Preprint] 2023; 566103. https://doi.org/10.1101/2023.11.07.566103
34. Zhao C., Pu J. Influence of host sialic acid receptors structure on the host specificity of influenza viruses. Viruses 2022; 14(10):2141. https://doi.org/10.3390/v14102141
35. Mifsud E.J., Kuba M., Barr I.G. Innate immune responses to influenza virus infections in the upper respiratory tract. Viruses 2021; 13(10):2090. https://doi.org/10.3390/v13102090
36. Bant P., Owczarek W., Szczygielski K., Cierniak S., Kania J., Jurkiewicz D. Occurrence of IL-1, IL-10, CD25, CD40, and CD69 in the tissue of palatine tonsils. Postepy Dermatol. Alergol. 2022; 39(1):182–188. https://doi.org/10.5114/ada.2021.110285
37. Ferreira A.C., Sacramento S.Q., Pereira-Dutra F.S., Fintelman-Rodrigues N., Silva P.P., Mattos M., de Freitas C.S., Marttorelli A. de Melo G.R., Campos M.M., Azevedo-Quintanilha I.G., Carlos A.S., Emídio J.V., Garcia C.C., Bozza P.T., Bozza F.A., Souza T.M.L. Severe influenza infection is associated with inflammatory programmed cell death in infected macrophages. Front. Cell. Infect. Microbiol. 2023; 13:1067285. https://doi.org/10.3389/fcimb.2023.1067285
38. Short K.R., Kuiken T., Riel D.V. Role of endothelial cells in the pathogenesis of influenza in humans. J. Infect. Dis. 2019; 220(11): 1859–1860. https://doi.org/10.1093/infdis/jiz349
39. Kaur S., Bansal R., Kollimuttathuillam S., Gowda A.M., Singh B., Mehta D., Maroules M. The looming storm: blood and cytokines in COVID-19. Blood Rev. 2021; 46: 100743. https://doi.org/10.1016/j.blre.2020.100743
40. Minkoff J.M., tenOever B. Innate immune evasion strategies of SARS-CoV-2. Nat. Rev. Microbiol. 2023; 21(3):178–194. https://doi.org/10.1038/s41579-022-00839-1
41. Chang S.H., Minn D., Kim S.W., Kim Y.K. Inflammatory markers and cytokines in moderate and critical cases of COVID-19. Clin. Lab. 2021; 67(9):2115–2120. https://doi.org/10.7754/Clin.Lab.2021.210142
42. Nathanielsz J., Toh Z.Q., Ha Do L.A., Mulholland K., Licciardi P.V. SARS-CoV-2 infection in children and implications for vaccination. Pediatr. Res. 2023; 93(5):1177-1187. https://doi.org/10.1038/s41390-022-02254-x
43. Kunnumakkara A.B., Rana V., Parama D., Banik K., Girisa S., Henamayee S., Thakur K.K., Dutta U., Garodia P., Gupta S.C., Aggarwal B.B. COVID-19, cytokines, inflammation, and spices: how are they related? Life Sci. 2021; 284:119201. https://doi.org/10.1016/j.lfs.2021.119201
44. de Lima T.M., Martins R.B., Miura C.S., Oliveira Souza M.V., Anzolini Cassiano M.H., Rodrigues T.S., Veras F.P., de Freitas Sousa J., Gomes R., de Almeida G.M., Melo S.R., da Silva G.C., Dias M., Capato C.F., Silva M.L., de Barros Luiz V.E.D., Rodrigues Carenzi L., Zamboni D.S., de Melo Jorge D.M., de Queiroz Cunha F., Tamashiro E., Anselmo- Lima W.T., Pereira Valera F.C., Arruda E. Tonsils are major sites of persistence of SARS-CoV-2 in children. Microbiol. Spectr. 2023; 11(5):e0134723. https://doi.org/10.1128/spectrum.01347-23
45. Atasheva S., Shayakhmetov D.M. Cytokine responses to adenovirus and adenovirus vectors. Viruses 2022; 14(5):888. https://doi.org/10.3390/v14050888
46. Li J., Wei J., Xu Z., Jiang C., Li M., Chen J., Li Y., Yang M., Gu Y., Wang F., Shu Y., Yang Y., Sun L., Liu X. Cytokine/ chemokine expression is closely associated disease severity of human adenovirus infections in immunocompetent adults and predicts disease progression. Front. Immunol. 2021; 12:691879. https://doi.org/10.3389/fimmu.2021.691879
47. Bagasi A.A., Howson-Wells H.C., Clark G., Tarr A.W., Soo S., Irving W.L., McClure C.P. Human bocavirus infection and respiratory tract disease identified in a UK patient cohort. J. Clin. Virol. 2020; 129:104453. https://doi.org/10.1016/j.jcv.2020.104453
48. Oldhoff E., Bennet R., Eriksson M., Allander T. Human bocavirus 1 epidemiology in children in relation to virus load and codetection. Acta Paediatr. 2023; 112:1049–1055. https://doi.org/10.1111/apa.16699
49. Ademhan Tural D., Yalcin E., Emiralioglu N., Ozsezen B., Alp A., Sunman B., Gozmen O., Dogru D., Ozcelik U., Kiper N. Human bocavirus and human metapneumovirus in children with lower respiratory tract infections: effects on clinical, microbiological features and disease severity. Pediatr. Int. 2022; 64:e15102. https://doi.org/10.1111/ped.15102
50. Alkubaisi N.A., Aziz I.M., Alsaleh A.N., Alhetheel A.F., Almajhdi F.N. Molecular profiling of inflammatory mediators in human respiratory syncytial virus and human bocavirus infection. Genes (Basel) 2023; 14(5):1101. https://doi.org/10.3390/genes14051101
Review
For citations:
Manukyan A.S., Prikhodko A.G. The role of respiratory infections in the formation of airway hyperresponsiveness in children. Bulletin Physiology and Pathology of Respiration. 2024;(93):121-131. (In Russ.) https://doi.org/10.36604/1998-5029-2024-93-121-131