Preview

Bulletin Physiology and Pathology of Respiration

Advanced search

The role of non-fermenting gram-negative bacteria Stenotrophomonas maltophilia in the etiology of infectious diseases (review)

https://doi.org/10.36604/1998-5029-2024-93-141-155

Abstract

Gram-negative bacteria Stenotrophomonas maltophilia rank third among non-fermenting gram-negative bacteria in terms of detection frequency in various infectious pathologies. This review presents information on the various virulence factors, mechanisms used by S. maltophilia for colonization and infection of the human body, multiple drug resistance, clinical manifestations of the diseases caused, and methods of bacteriological diagnosis. The importance of early identification of this pathogen for practicing physicians is emphasized. The selection of treatment for infections caused by S. maltophilia is discussed, highlighting the challenges faced by both clinicians and microbiologists. To this end, current domestic and international scientific publications were reviewed using scientific electronic library search engines such as PubMed, Google Scholar, eLIBRARY.ru, and CyberLeninka.

About the Authors

A. O. Golubeva
Federal Budgetary Institution of Science "Khabarovsk Scientific Research Institute of Epidemiology and Microbiology" of the Federal Service for Supervision of Consumer Rights Protection and Human Well-being
Russian Federation

Aleksandra O. Golubeva, Junior Staff Scientist, Laboratory of Bacterial Infections

2 Shevchenko Str., Khabarovsk, 680000



A. P. Bondarenko
Federal Budgetary Institution of Science "Khabarovsk Scientific Research Institute of Epidemiology and Microbiology" of the Federal Service for Supervision of Consumer Rights Protection and Human Well-being
Russian Federation

Albina P. Bondarenko, MD, PhD (Med.), Leading Staff Scientist, Head of Laboratory of Bacterial Infections

2 Shevchenko Str., Khabarovsk, 680000



O. E. Trotsenko
Federal Budgetary Institution of Science "Khabarovsk Scientific Research Institute of Epidemiology and Microbiology" of the Federal Service for Supervision of Consumer Rights Protection and Human Well-being
Russian Federation

Olga E. Trotsenko, MD, PhD, DSc (Med.), Director

2 Shevchenko Str., Khabarovsk, 680000



O. N. Ogienko
Federal Budgetary Institution of Science "Khabarovsk Scientific Research Institute of Epidemiology and Microbiology" of the Federal Service for Supervision of Consumer Rights Protection and Human Well-being
Russian Federation

Ogienko Olga Nikolaevna, Junior Staff Scientist, Laboratory of Bacterial Infections

2 Shevchenko Str., Khabarovsk, 680000



References

1. Brooke J. S. Srophomonas maltophilia: an Emerging global Opportunistic Pathogen. Clin. Microbiol. Rev. 2012; 25(1):2–41. https://doi.org/10.1128/CMR.00019-11

2. Brooke J.S. Advances in the Microbiology of Stenotrophomonas maltophilia Clin. Microbiol. Rev 2021; 34(3):Article number:e0003019. https://doi.org/10.1128/cmr.00030-19

3. Kozlov R.S. [Nosocomial infections: epidemiology, pathogenesis, prevention and control]. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya = Clinical microbiology and antimicrobial chemotherapy 2000; 2 (2): 16–30 (in Russian).

4. Shagenyan I.A., Tchernukha M.Yu. [Infections Caused by Nonfermenting Gram-negative Rods: Epidemiological, Microbiological and Clinical Features]. Klinicheskaja mikrobiologija i antimikrobnaja himioterapija = Clinical Microbiology and Antimicrobial Chemotherapy 2005; 7(3): 271–285 (in Russian).

5. Zaitseva V., Rogacheva T., Anisko L., Solovej N. [Analysis of non-fermenting Gram-negative bacteria spreading and their resistance to antimicrobial agents]. Klinicheskaja infektologija i parazitologija = Clinical infectology and parasitology 2020; 9(2): 151–160 (in Russian). https://doi.org/10.34883/PI.2020.9.2.001

6. Panina M.V. [Etiologic structure, treatment and outcomes of bacteremia in children with oncohematologic diseases and depressions of hematopoiesis: abstract of PhD thesis]. Мoscow; 2017 (in Russian).

7. Cherif H., Kronvall G., Björkholm M., Kalin M. Bacteraemia in hospitalised patients with malignant blood disorders: a retrospective study of causative agents and their resistance profiles during a 14-year period without antibacterial prophylaxis. Hematol. J. 2003; 4(6):420–426. https://doi.org/10.1038/sj.thj.6200334

8. Montassier E., Batard E., Gastinne T., Potel G., de La Cochetière M.F. Recent changes in bacteremia in patients with cancer: a systematic review of epidemiology and antibiotic resistance. Eur. J. Clin. Microbiol. Infect. Dis. 2013; 32(7):841–850. https://doi.org/10.1007/s10096-013-1819-7

9. Ramphal R. Changes in the etiology of bacteremia in febrile neutropenicpatients and the susceptibilities of the currently isolated pathogens. Clin. Infect. Dis. 2004; 39 (Suppl.1):S.25–31. https://doi.org/10.1086/383048

10. Wisplinghoff H., Seifert H., Wenzel R. P., Edmond M. B. Current trends in the epidemiology of nosocomial bloodstream infections in patients with hematological malignancies and solid neoplasms in hospitals in the United States. Clin. Infect. Dis. 2003; 36(9):1103–1110. https://doi.org/10.1086/374339

11. Sader H.S., Jones R.N. Antimicrobial susceptibility of uncommonly isolated non-enteric Gram-negative bacilli. Int. J. Antimicrob. Agents. 2005; 25(2):95–109. https://doi.org/10.1016/j.ijantimicag.2004.10.002

12. Abbott I.J, Peleg A.Y. Stenotrophomonas, Achromobacter, and nonmelioid Burkholderia species: antimicrobial resistance and therapeutic strategies. Semin. Respir. Crit. Care Med. 2015; 36(1): 99–110. https://doi.org/10.1055/s-0034-1396929

13. Abbott I.J., Slavin M.A., Turnidge J.D., Thursky K.A., Worth L.J. Stenotrophomonas maltophilia: emerging disease patterns and challenges for treatment. Expert. Rev. Anti. Infect. Ther. 2011; 9(4): 471–488. https://doi.org/10.1586/eri.11.24

14. Coenye T., Vanlaere E., Falsen E., Vandamme P. Stenotrophomonas africana Drancourt et al. 1997 is a later synonym of Stenotrophomonas maltophilia (Hugh 1981) Palleroni and Bradbury 1993. Int. J. Syst. Evol. Microbiol. 2004; 54(4): 1235–1237. https://doi.org/10.1099/ijs.0.63093-0

15. Zubarev A. S. [Infections associated with Stenotrophomonas maltophilia in patients of intensive care units and intensive care]. Intensivnaya terapiya 2008; 1(3):42–46 (in Russian).

16. Denton M., Kerr K.G. Microbiological and clinical aspects of infection asociated with Stenotrophomonas maltophilia. Clin. Microbiol. Rev. 1998; 1(1): 57–80. https://doi.org/10.1128/CMR.11.1.57

17. Bhaumik R., Aungkur N. Z., Anderson G.G. A guide to Stenotrophomonas maltophilia virulence capabilities, as we currently understand them. Front. Cell. Infect. Microbiol. 2024; 11(13): Article number:1322853. https://doi.org/10.3389/fcimb.2023.1322853

18. Palleroni N.J. Stenotrophomonas. Bergey's manual of systematic of archaea and bacteria. Available at: https://onlinelibrary.wiley.com/doi/10.1002/9781118960608.gbm01237.

19. Ryan R.P., Monchy S., Cardinale M., S. Taghavi L., Crossman M.B., Avison G., Berg D., van der Lelie D., Dow J.M. The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat. Rev. Microbiol. 2009; 7(7):514– 525. https://doi.org/10.1038/nrmicro2163

20. Turrientes M.C., Baquero M.R., Sánchez M.B., Valdezate S., Escudero E., Berg G., Cantón R., Baquero F., Galán J.C., Martínez J. L. Polymorphic mutation frequencies of clinical and environmental Stenotrophomonas maltophilia populations. Appl. Environ. Microbiol. 2010; 76(6):1746–1758. https://doi.org/10.1128/AEM.02817-09

21. Pompilio A., Crocetta V., Ghosh D., Chakrabarti M., Gherardi G., Vitali L. A., Fiscarelli E., Di Bonaventura G. Stenotrophomonas maltophilia phenotypic and genotypic diversity during a 10-year colonization in the lungs of a cystic fibrosis patient. Front. Microbiol. 2016; (7):1551. https://doi.org/10.3389/fmicb.2016.01551

22. Palleroni N.J., Bradbury J.F. Stenotrophomonas, a new bacterial genus for Xanthomonas maltophilia (Hugh 1980) Swings et al. 1983. Int. J. Syst. Bacteriol. 1993; 43(3):606–609. https://doi.org/10.1099/00207713-43-3-606

23. Hugh R., Leifson E. A description of the type strain of Pseudomonas maltophilia. Int. Bull. Bacteriol. Nomencl. Taxon. 1963; 13:133–138. https://doi.org/10.1099/0096266X-13-3-133

24. Ostankova Y.V., Semyonov A.V., Zueva E.V., Vashukova M.A., Totolyan A.A. [The identification of Stenotphomonas maltophilia using the techniques of direct sequenation 16S p RNA and MALDI-ToF mass-spectrometry]. Klinicheskaya laboratornaya diagnostika = Clinical Laboratory Diagnostics 2017; 62(3):165–170 (in Russian). http://doi.org/10.18821/0869-2084-2017-62-3-165-170

25. Trifonova A., Strateva T. Stenotrophomonas maltophilia – a low-grade pathogen with numerous virulence factors. Infect. Dis.(Lond.) 2019; 51(3): 168–178. https://doi.org/10.1080/23744235.2018.1531145

26. Berg G., Eberl L., Hartmann A. The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ. Microbiol. 2005; 7:1673–1685. https://doi.org/10.1111/j.1462-2920.2005.00891.x.

27. Rivas R., García-Fraile P., Mateos P.F., Martinez-Molina E., Velázquez E. Phylogenetic diversity of fast-growing bacteria isolated from superficial water of Lake Martel, a saline subterranean lake in Mallorca Island (Spain) formed by filtration from the Mediterranean Sea through underground rocks. Adv. Stud. Biol. 2009; 1:333–344.

28. Furushita M., Okamoto A., Maeda T., Ohta M., Shiba T. Isolation of multidrug-resistant Stenotrophomonas maltophilia from cultured yellowtail (Seriola quinqueradiata) from a marine fish farm. Appl. Environ. Microbiol. 2005; 71(9): 5598–5600. https://doi.org/10.1128/AEM.71.9.5598-5600.2005

29. Hejnar P., Kolář M., Sauer P. Antibiotic resistance of Stenotrophomonas maltophilia strains isolated from captive snakes. Folia Microbiol. 2010; 55(1):83–87. https://doi.org/10.1007/s12223-010-0014-9

30. Jayol A., Corlouer C., Haenni M., Darty M., Maillard K., Desroches M., Lamy B., Jumas-Bilak E., Madec J.Y., Decousser J.W. Are animals a source of Stenotrophomonas maltophilia in human infections? Contributions of a nationwide molecular study. Eur. J. Clin. Microbiol. Infect. Dis. 2018; 3(6): 1039–1045. https://doi.org/10.1007/s10096-018-3203-0

31. Bocharova Yu.A., Savinova T.A., Lyamin A.V., Kondratenko O.V., Polikarpova S.V., Zhilina S.V., Fedorova N.I., Semykin S.Y., Chaplin A.V., Korostin D.O., Mayansky N.A., Chebotar I.V. [Characteristics of Stenotrophomonas maltophilia isolates from cystic fibrosis patients in Russia]. Klinicheskaya laboratornaya diagnostika = Clinical Laboratory Diagnostics 2022; 67(5):315–320 (in Russian). https://dx.doi.org/10.51620/0869-2084-2022-67-5-315-320

32. Pompilio A., Pomponio S., Crocetta V., Gherardi G., Verginelli F., Fiscarelli E., Dicuonzo G., Savini V., D'Antonio D., Di Bonaventura G. Phenotypic and genotypic characterization of Stenotrophomonas maltophilia isolates from patients with cystic fibrosis: Genome diversity, biofilm formation, and virulence. BMC Microbiol. 2011; 5(11):159159. https://dx.doi.org/10.1186/1471-2180-11-159

33. Majumdar R., Karthikeyan H., Senthilnathan V., Sugumar S. Review on Stenotrophomonas maltophilia: an emerging multidrug-resistant opportunistic pathogen. Recent. Pat. Biotechnol. 2022; 16(4):329–354. https://doi.org/10.2174/1872208316666220512121205

34. [Clinical guidelines on cystic fibrosis (cystic fibrosis). All-Russian Association for patients with cystic fibrosis; (year of approval: 2021)] (in Russian). Available at: https://mukoviscidoz.org/klinicheskie-rekomendatsii-kistoznyj-fibroz-mukovistsidoz-2020.html

35. Schaumann R., Stein K., Eckhardt C., Ackermann G., Rodloff A.C. Infections caused by Stenotrophomonas maltophilia - a prospective. Infection 2001; 29(4): 205–208. https://doi.org/10.1007/s15010-001-1055-4

36. Zubkov M.N. [Non-fermenting bacteria: classification, General characterization, role in human pathology. Identification of Pseudomonas spp. and similar microorganisms]. Infekcii i antimikrobnaya terapiya = Infections and Antimicrobial Therapy 2003; 5(1):55–59 (in Russian).

37. Guzoglu N., Demirkol F.N., Aliefendioglu D. Haemorrhagic pneumonia caused by Stenotrophomonas maltophilia in two newborns. J. Infect. Dev. Ctries. 2015; 9: 533–35. https://doi.org/10.3855/jidc.5463

38. Senol E. Stenotrophomonas maltophilia: the significance and role as a nosocomial pathogen. J. Hosp. Infect. 2004; 5(1):1–7. https://doi.org/10.1016/j.jhin.2004.01.033

39. Looney W.J. Role of Stenotrophomonas maltophilia in hospital-acquired infection. Br. J. Biomed Sci. 2005; 6(3): 145–154. https://doi.org/10.1080/09674845.2005.11732702.

40. Said M. S., Tirthani E., Lesho E. Stenotrophomonas maltophilia (Update 2023). Available at: https://pubmed.ncbi.nlm.nih.gov/34283489/

41. Denton M., Rajgopal A., Mooney L., Qureshi A., Kerr K.G., Keer V., Pollard K., Peckham D.G., Conway S.P. Stenotrophomonas maltophilia contamination of nebulizers used to deliver aerosolized therapy to inpatients with cystic fibrosis. J. Hosp. Infect. 2003; 55:180–183. https://doi.org/10.1016/S0195-6701(03)00299-8

42. Looney W.J., Narita M., Mühlemann K. Stenotrophomonas maltophilia: an emerging opportunist human pathogen. Lancet Infect. Dis. 2009; 9(5):312–323. https://doi.org/10.1016/S1473-3099(09)70083-0

43. Brooke J.S. New strategies against Stenotrophomonas maltophilia: a serious worldwide intrinsically drug-resistant opportunistic pathogen. Expert Rev. Anti Infect. Ther. 2014; 1(1):1–4. https://doi.org/10.1586/14787210.2014.864553

44. Mikhailovich V.M., Heydarov R.N., Bocharova S.A., Chebotar I.V. [Molecular-genetic portrait of virulence Stenotrophomonas maltophilia]. Zhurnal mikrobiologii, jepidemiologii i immunobiologii = Journal of Microbiology, Epidemiology and Immunobiology 2023; 100(5):380–390 (in Russian). https://doi.org/10.36233/0372-9311-417

45. Ogorodnik E.A. [Stenotrophomonas maltophilia as a risk factor for the development of infections associated with the provision of medical care. In: Proceedings of the XXVII International scientific and practical conference of students and young scientists]. Minsk; 2023: 932–936 (in Russian). ISBN 978-985-21-1398-4. Available at: https://rep.bsmu.by/handle/BSMU/40058

46. De Abreu Vidipó L., de Andrade Marques E., Puchelle E., Plotkowski M-C. Stenotrophomonas maltophilia interaction with human epithelial respiratory cells in vitro. Microbiol. Immunol. 2001; 45:563–569. https://doi.org/10.1111/j.1348-0421.2001.tb01287.x

47. Pompilio A., Crocetta V., Confalone P., Nicoletti M., Petrucca A., Guarnieri S., Fiscarelli E., Savini V., Piccolomini R., Di Bonaventurа G. Adhesion to and biofilm formation on IB3-1 bronchial cells by Stenotrophomonas maltophilia isolates from cystic fibrosis patients. BMC Microbiol. 2010; 10:102. https://doi.org/10.1186/1471-2180-10-102

48. Romanova Y.M., Gintsburg A.L. [Bacterial biofilms as a natural form of existence of bacteria in the environment and host organism]. Zhurnal mikrobiologii, jepidemiologii i immunobiologii = Journal of Microbiology 2011; 3: 99–109 (in Russian).

49. Ilyina T.S., Romanova Y.M. [Bacterial biofilms: role in chronic infectious processes and the search for means to combat them]. Molekulyarnaya genetika, mikrobiologiya i virusologiya = Molecular Genetics, Microbiology and Virology 2021; 39(2):14–24 (in Russian). https://doi.org/10.17116/molgen20213902114

50. Mahdi O., Eklund B., Fisher N. Laboratory culture and maintenance of Stenotrophomonas maltophilia. Curr. Protoc. Microbiol. 2014. 32: Unit 6F.1. https://doi.org/10.1002/9780471729259.mc06f01s32

51. Flores-Treviño S., Bocanegra-Ibarias P., Camacho-Ortiz A., Morfín-Otero R., Salazar-Sesatty H.A., Garza-González E. Stenotrophomonas maltophilia biofilm: its role in infectious diseases. Expert. Rev. Anti Infect Ther. 2019; 17(11): 877– 893. https://doi.org/10.1080/14787210.2019.1685875

52. Azimi A., Aslanimehr M., Yaseri M., Shadkam M., Douraghi M. Distribution of smf-1, rmlA, spgM and rpfF genes among Stenotrophomonas maltophilia isolates in relation to biofilm-forming capacity. JGAR 2020; 23: 321–326. https://doi.org/10.1016/j.jgar.2020.10.011

53. Lebeaux D., Chauhan A., Rendueles O., Beloin C. From in vitro to in vivo models of bacterial biofilm-related infections. Pathogens 2013; 2(2):288–356. https://doi.org/10.3390/pathogens2020288

54. Kalidasan V., Joseph N., Kumar S., Awang Hamat R., Neela V.K. Iron and virulence in Stenotrophomonas maltophilia: all we know so far. Front. Cell. Infect. Microbiol. 2018; 8:401. https://doi.org/10.3389/fcimb.2018.00401

55. Kuznetsova D.A., Rykova V.A., Podladchikova O.N. [Bacterial siderophores: structure, functions, and role in the pathogenesis of nfections]. Problemy osobo opasnykh infektsiy = Problems of Particularly Dangerous Infections 2022; 3:14–22 (in Russian). https://doi.org/10.21055/0370-1069-2022-3-14-22

56. Goss C.H., Mayer-Hamblett N., Aitken M.L., Rubenfeld G.D., Ramsey B.W. Association between Stenotrophomonas maltophilia and lung function in cystic fibrosis. Thorax 2004; 5(11): 955–559. https://doi.org/https://doi.org/10.1136/thx.2003.017707

57. Bostanghadiri N., Sholeh M., Navidifar T., Dadgar-Zankbar L., Elahi Z., van Belkum A., Darban-Sarokhalil D. Global mapping of antibiotic resistance rates among clinical isolates of Stenotrophomonas maltophilia: a systematic review and meta-analysis. Ann. Clin. Microbiol. Antimicrob. 2024; 23(1): 26. https://doi.org/10.1186/s12941-024-00685-4

58. Kasimova A.R., Gordina E.M., Toropov S.S., Bozhkova S.A. [Stenotrophomonas maltophilia infection in trauma and orthopedic patients: clinical experience and review]. Travmatologiya i ortopediya Rossii = Traumatology and Orthopedics of Russia 2023; 29(1): 84–94 (in Russian). https://doi.org/10.17816/2311-2905-2027.59

59. Cerezer V.G., Bando S.Y., Pasternak J., Franzolin M.R., Moreira-Filho C.A. Phylogenetic analysis of Stenotrophomonas spp. isolates contributes to the identification of nosocomial and community-acquired infections. Biomed. Res. Int. 2014; 2014(2): 151405. https://doi.org/10.1155/2014/151405

60. Gales A.C., Seifert H., Gur D., Castanheira M., Jones R. N., Sader H.S. Antimicrobial susceptibility of acinetobacter calcoaceticus – acinetobacter baumannii complex and Stenotrophomonas maltophilia clinical isolates: results from the sentry antimicrobial surveillance program (1997–2016). Open Forum Infectious Diseases 2019; 6(1): 34–46. https://doi.org/10.1093/ofid/ofy293

61. Adegoke A., Stenström T. A., Okoh A. I. Stenotrophomonas maltophilia as an emerging ubiquitous pathogen: looking beyond contemporary antibiotic therapy. Front. Microbiol. 2017; 8:2276. https://doi.org/10.3389/fmicb.2017.02276

62. Burdge D.R., Noble M.A., Campbell M.E., Krell V.L., Speert D.P. Xanthomonas maltophilia misidentified as Pseudomonas cepacia in cultures of sputum from patients with cystic fibrosis: a diagnostic pitfall with major clinical implications. Clin. Infect. Dis. 1995; 20(2):445–458. https://doi.org/10.1093/clinids/20.2.445

63. Kushnareva M.V., Markhulia H.M., Dementieva G.M., Chursina E.S., Keshishyan ES, Semenov A.V. [Hospitalacquired pneumonia associated with the causative agent Stenotrophomonas maltophilia, in newborn infants]. Rossiyskiy vestnik perinatologii i pediatrii = Russian Herald of Perinatology and Pediatrics 2017; 62(3):53–58 (in Russian). https://doi.org/10.21508/1027-4065-2017-62-3-53-58

64. Kollef M. H., Silver P., Murphy D. M., Trouillon E. The effect of late-onset ventilator-associated pneumonia in determining patient mortality.Chest1995; 108 (6):1655–1662. https://doi.org/10.1378/chest.108.6.1655

65. Anderson S.W., Stapp J.R., Burns J.L., Qin X. Characterization of small-colony-variant Stenotrophomonas maltophilia isolated from the sputum specimens of five patients with cystic fibrosis. J. Clin. Microbiol. 2007; 45(2):529–535. https://doi.org/10.1128/JCM.01444-06

66. Tedikov V.M. [Small colony variant of Stenotrophomonas maltophilia can restore wild phenotype in vitro. In: Collection of scientific papers of the all-russian scientific and practical conference with international participation]. N. Novgorod; 2019:245–247 (in Russian). ISBN 978-5-906125-69-9.

67. Recommendations Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy "Determination of sensitivity of microorganisms to antimicrobial agents (Update 2024-02). Interregional association on clinical microbiology and antimicrobial chemotherapy. Available at: https://www.antibiotic.ru/files/334/ocmap2024.pdf

68. Gil-Gil T., Martínez J. L., Blanco P. Mechanisms of antimicrobial resistance in Stenotrophomonas maltophilia: a review of current knowledge. Expert. Rev. Anti. Infect. Ther. 2020; 18(4):335–347. https://doi.org/10.1080/14787210.2020.1730178

69. Azimi A., Rezaei F., Yaseri M., Jafari S., Rahbar M., Douraghi M. Emergence of fluoroquinolone resistance and possible mechanisms in clinical isolates of Stenotrophomonas maltophilia from Iran. Scientific Reports 2021; 11(1):9582. https://doi.org/10.1038/s41598-021-88977

70. Martsulevich M.V., Sokolova T.N. [Genetic mechanisms of bacterial resistance to ciprofloxacin (Literature review)]. Zhurnal Grodnenskogo gosudarstvennogo meditsinskogo universiteta = Journal of Grodno State Medical University 2023; 21(6):531–535 (in Russian). https://doi.org/10.25298/2221-8785-2023-21-6-531-535

71. European Committee on Antimicrobial Susceptibility Testing (EUCAST). Intrinsic Resistance and Unusual Phenotypes. Breakpoint 14.0, Аccessed: January 2024. Available at: http://www.eucast.org/clinical_breakpoints/.

72. Clinical and laboratory standards institute (CLSI). Performance standards for antimicrobial disk susceptibility tests, 14th edition (Update 2024). Available at: https://clsi.org/standards/products/microbiology/documents/m100/.


Review

For citations:


Golubeva A.O., Bondarenko A.P., Trotsenko O.E., Ogienko O.N. The role of non-fermenting gram-negative bacteria Stenotrophomonas maltophilia in the etiology of infectious diseases (review). Bulletin Physiology and Pathology of Respiration. 2024;(93):141-155. (In Russ.) https://doi.org/10.36604/1998-5029-2024-93-141-155

Views: 120


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-5029 (Print)