Types of immune response in patients with asthma and airway hyperresponsiveness to cold and hypoosmolar stimuli
https://doi.org/10.36604/1998-5029-2024-94-51-62
Abstract
The pathogenesis of asthma may involve allergic inflammation of the "low Th2" subtype, which differs from the "high Th2" subtype by the dominant profile of intercellular signaling molecules. Aim. To study the types of immune response in patients with asthma and airway hyperresponsiveness to cold and osmotic stimuli by analyzing the levels of interleukins (IL)-17A, IL-17F, IL-22, IL-6, IL-4, IL-13, interferon (IFN)-γ, and patterns of bronchial inflammation. Materials and methods. Sixty-five patients with mild persistent asthma were examined. Induced sputum collection, blood sampling for biochemical studies, spirometry, bronchial provocation tests with isocapnic hyperventilation of cold (-20 °C) air (IHCA), and ultrasonic inhalation of distilled water (UIDW) were performed. The cellular composition of sputum (in percentages) was analyzed, and cytokine profiles in peripheral blood serum (IL-17A, IL-17F, IL-22, IL-6, IL-4, IL-13, IFN-γ, in pg/mL) were determined. Results. Group 1 (n=18) included patients with bronchial hyperresponsiveness to the IHCA; Group 2 (n=18) comprised patients with airway hyperresponsiveness to the UIDW; Group 3 (n=29) consisted of non-responders to the triggers. Patients in Groups 1 and 2 had lower baseline bronchial patency indicators. In the sputum of patients in Group 1, higher numbers of neutrophils and proportions of desquamated epithelial cells were recorded, with a correlation observed between the cell content and the airway response to the IHCA. These patients exhibited higher serum concentrations of IL-17A, IL-22, IL-6, IL-4, and IFN-γ. Correlation analysis showed an association between IL-17A levels and airway response to the IHCA: ΔFEV1IHCA (Rs=-0.33; p=0.049); ΔMEF50IHCA (Rs=-0.50; p=0.030); between IL-17F levels and ΔFEF25-75IHCA (Rs=-0.38; p=0.037); ΔMEF50IHCA (Rs=-0.40; p=0.029). IL-17A levels correlated with IL-17F levels (Rs=0.53; p=0.022), and IL-4 concentrations correlated with IFN-γ levels (Rs=0.53; p=0.0004). Conclusion. Patients with asthma and cold airway hyperresponsiveness are characterized by more pronounced impairments in airway patency, increased neutrophil counts in sputum, and elevated serum levels of IL-17A, IL-22, IL-6, IFN-γ, and IL-4. The immune response in these patients is associated with Th2/Th17 and/or Th1/Th17 types, whereas in individuals with osmotic airway hyperresponsiveness, it is more associated with the Th2 type of inflammation.
About the Authors
A. B. PirogovRussian Federation
Aleksey B. Pirogov, MD, PhD (Med.), Associate Professor, Senior Staff Scientist, Laboratory of Functional Research of Respiratory System
22 Kalinina Str., Blagoveshchensk, 675000
A. G. Prikhodko
Russian Federation
Аnnа G. Prikhodko, MD, PhD, DSc (Med.), Main Staff Scientist, Laboratory of Functional Research of Respiratory System
22 Kalinina Str., Blagoveshchensk, 675000
N. A. Pirogova
Russian Federation
Natal'ya A. Pirogova, PhD (Med.), Staff Scientist, Laboratory of Functional Research of Respiratory System
22 Kalinina Str., Blagoveshchensk, 675000
D. A. Gassan
Russian Federation
Dina A. Gassan, PhD (Med.), Head of Laboratory of Mechanisms of Virus-Associated Developmental Pathologies
22 Kalinina Str., Blagoveshchensk, 675000
D. E. Naumov
Russian Federation
Denis E. Naumov, PhD (Med.), Head of Laboratory of Molecular and Translational Research
22 Kalinina Str., Blagoveshchensk, 675000
V. P. Kolosov
Russian Federation
Victor P. Kolosov, MD, PhD, DSc (Med.), Academician of RAS, Professor, Scientific Director
22 Kalinina Str., Blagoveshchensk, 675000
J. M. Perelman
Russian Federation
Juliy M. Perelman, MD, PhD, DSc (Med.), Corresponding Member of RAS, Professor, Deputy Director on Scientific Work, Head of Laboratory of Functional Research of Respiratory System
22 Kalinina Str., Blagoveshchensk, 675000
References
1. Prikhodko A.G., Perelman J.M., Kolosov V.P. [Airway hyperresponsiveness]. Vladivostok, Dal’nauka; 2011 (in Russian). ISBN: 978-5-8044-1220-4.
2. Perelman JM, Naumov DE, Prikhod'ko AG, Kolosov VP. [Mechanisms and manifestations of osmotic airway hyperresponsiveness]. Vladivostok: Dal'nauka; 2016 (in Russian). ISBN: 978-5-8044-1627-1.
3. Pirogov A.B., Prikhodko A.G., Naumov D.E., Perelman J.M. [Functional activity of bronchial granulocytes in the cytokine profi le formation in asthma patients during airway reaction to cold stimulus]. Immunologiya = Immunologiya 2020; 41 (5):432–440 (in Russian). https://doi.org/10.33029/0206-4952-2020-41-5-432-440.
4. Frey A., Lunding L.P., Ehlers J.C., Weckmann M., Zissler U.M., Wegmann M. More than just a barrier: the immune functions of the airway epithelium in asthma pathogenesis. Front. Immunol. 2020; 11:761. https://doi.org/10.3389/fimmu.2020.00761
5. Lindén А., Dahlén В. Interleukin-17 cytokine signalling in patients with asthma. Eur. Respir. J. 2014; 44(5):1339– 1331. https://doi.org/10.1183/09031936.00002314
6. Desai M., Oppenheimer J. Elucidating asthma phenotypes and endotypes: progress towards personalized medicine. Ann. Allergy Asthma Immunol. 2016; 116(5):394–401. https://doi.org/10.1016/j.anai.2015.12.024
7. Xie Y., Abel P.W., Casale T.B., Tu Y. Th17 cells and corticosteroid insensitivity in severe asthma. J. Allergy Clin. Immunol. 2022; 149(2):467–479. https://doi.org/10.1016/j.jaci.2021.12.769
8. Global Initiative for Asthma (GINA). Global strategy for asthma management and prevention (2023 update). Accessed August 07, 2023. Available at: https://ginasthma.org/wp-content/uploads/2023/07/GINA-2023-Full-report-23_07_06-WMS.pdf
9. Chuchalin A.G., editor. [Respiratory medicine: manual (Vol.1)]. Moscow: PulmoMedia; 2024 (in Russian). ISBN: 978-5-6048754-9-0.
10. Karpishchenko A.I., editor. [Medical laboratory technologies: a guide to clinical laboratory diagnostics (Vol.2)]. Moscow: GEOTAR-Media; 2012 (in Russian). ISBN: 978-5-9704-2275-5.
11. Аfanas’eva E.Yu., Prikhodko A.G., Il’in A.V., Perelman J.M. [Changes in lung inflation in asthma in patients with osmotic airway hyperresponsiveness]. Pulmonologiya 2021; 31(6):749–758 (in Russian). https://doi.org/10.18093/0869-0189-2021-31-6-749-758
12. Bedoya S.K., Lam B., Lau K., Larkin J. 3rd. Th17 cells in immunity and autoimmunity. Clin. Dev. Immunol. 2013; 2013:986789. https://doi.org/10.1155/2013/986789
13. Fujisawa T., Chang M.M., Velichko S., Thai P., Hung L.-Y., Huang F., Phuong N., Chen Y., Wu R. NF-κB mediates IL-1β– and IL-17A–induced MUC5B expression in airway epithelial cells. Am. J. Respir. Cell Mol. Biol. 2011; 45(2):246– 252. https://doi.org/10.1165/rcmb.2009-0313OC
14. Chang Y., Al-Alwan L., Risse P.-A., Halayko A.J., Martin J.G., Baglole C.J., Eidelman D.H., Hamid Q. Th17-associated cytokines promote human airway smooth muscle cell proliferation. FASEB J. 2012; 26(12):5152–5160. https://doi.org/10.1096/fj.12-208033
15. Al-Ramli W., Préfontaine D., Chouiali F., Martin J.G., Olivenstein R., Lemière C., Hamid Q. T(H)17-associated cytokines (IL-17A and IL-17F) in severe asthma. J. Allergy Clin. Immunol. 2009; 123(5):1185–1187. https://doi.org/10.1016/j.jaci.2009.02.024
16. Habib N., Pasha M.A., Tang D.D. Current understanding of asthma pathogenesis and biomarkers. Cells 2022; 11(17):2764. https://doi.org/10.3390/cells11172764
17. Acosta-Rodriguez E.V., Napolitani G., A. Lanzavecchia A., Sallusto F. Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat. Immunol. 2007; 8(9):942–949. https://doi.org/10.1038/ni1496
18. Singh R.P., Hasan S., Sharma S., Nagra S., Yamaguchi D.T., Wong D.T., Hahn B.H., Hossain A. Th17 cells in inflammation and autoimmunity. Autoimmun. Rev. 2014; 13(12):1174–1181. https://doi.org/10.1016/j.autrev.2014.08.019
19. Nishihara M., Ogura H., Ueda N., Tsuruoka M., Kitabayashi C., Tsuji F., Aono H., Ishihara K., Huseby E., Betz U. A. K., Murakami M., Hirano T. IL-6-gp130-STAT3 in T cells directs the development of IL-17+ Th with a minimum effect on that of Treg in the steady state. Int. Immunol. 2007; 19(6):695–702. https://doi.org/10.1093/intimm/dxm045
20. Nikolskii A.A., Shilovskiy I.P., Jumashev K.V., Vishniakova L.I., Barvinskaia E.D., Kovchina V.I., Korneev A.V., Turenko V.N., Kaganova M.M., Brylina V.E., Nikonova A.A., Kozlov I.B., Kofiadi I.A., Sergeev I.V., Maerle A.V., Petuhova O.A., Kudlay D.A., Khaitov M.R. [Effect of local suppression of Stat3 gene expression in a mouse model of pulmonary neutrophilic inflammation]. Immunologiya 2021; 42 (6): 600–614 (in Russian). https://doi.org/10.33029/0206-4952-2021-42-6-600-614
21. Schroder K., Hertzog P.J., Ravasi T., Hume D.A. Interferon-gamma: an overview of signals, mechanisms and functions. J. Leukoc. Biol. 2004; 75(2):163–189. https://doi.org/10.1189/jlb.0603252.
22. Usui T., Preiss J.C., Kanno Y., Yao Z.J., Bream J.H., O'Shea J.J., Strober W. T-bet regulates Th1 responses through essential effects on GATA-3 function rather than on IFNG gene acetylation and transcription. J. Exp. Med. 2006; 203(3):755–766. https://doi.org/10.1084/jem.20052165
23. Davoine F., Lacy P. Eosinophil cytokines, chemokines, and growth factors: emerging roles in immunity. Front. Immunol. 2014; 5:570. https://doi.org/10.3389/fimmu.2014.00570
24. Žaloudíková M. Mechanisms and effects of macrophage polarization and its specifics in pulmonary environment. Physiol. Res. 2023; 72 (Suppl. 2):S137–S156. https://doi.org/10.33549/physiolres.935058
25. Jiang Z., Zhu L. Update on the role of alternatively activated macrophages in asthma. J. Asthma Allergy 2016; 9:101–107. https://doi.org/10.2147/JAA.S104508
26. Li M., Wang M., Wen Y., Zhang H., Zhao G.-N., Gao Q. Signaling pathways in macrophages: molecular mechanisms and therapeutic targets. MedComm. 2023; 4(5):e349. https://doi.org/10.1002/mco2.349
27. Arora S., Deva K., Agarwalb B., Dasc P., Ali Syed M. Macrophages: Their role, activation and polarization in pulmonary diseases. Immunobiology 2018; 223(4-5):383–396. https://doi.org/10.1016/j.imbio.2017.11.001
28. Hellings P.W., Steelant B. Epithelial barriers in allergy and asthma. J. Allergy Clin. Immunol. 2020; 145(6):1499– 1509. https://doi.org/10.1016/j.jaci.2020.04.010
29. McFarlane A., Pohler E., Moraga I. Molecular and cellular factors determining the functional pleiotropy of cytokines. FEBS J. 2023; 290(10):2525–2552. https://doi.org/10.1111/febs.16420
30. Calvén J., Ax E., Rådinger M. The airway epithelium – а central player in asthma pathogenesis. Int. J. Mol. Sci. 2020; 21(23):8907. https://doi.org/10.3390/ijms21238907
31. Heijink I.H., Kuchibhotla V.N.S., Roffel1 M.P., Maes T., Knight D.A., Sayers I., Nawijn M.C.J. Epithelial cell dysfunction, a major driver of asthma development. J. Allergy Clin. Immunol. 2020; 75(8):1902–1917. https://doi.org/10.1111/all.14421
32. Irvin C., Zafar I., Good J., Rollins D., Christianson C., Gorska M.M., Martin R.J., Alam R. Increased frequency of dual-positive Th2/Th17 cells in bronchoalveolar lavage fluid characterizes a population of patients with severe asthma. J. Allergy Clin. Immunol. 2014; 134(5): 1175–1186. https://doi.org/10.1016/j.jaci.2014.05.038
33. Lynch J.P., Ferreira M.A., Phipps S. Th2/Th17 reciprocal regulation: twists and turns in the complexity of asthma phenotypes. Ann. Transl. Med. 2016; 4 (Suppl. 1):59. https://doi.org/10.21037/atm.2016.10.69
34. Choy D.F., Hart K.M., Borthwick L.A., Shikotra A., Nagarkar D.R., Siddiqui S., Jia G., Ohri C.M., Doran E., Vannella K.M., Butler C.A., Hargadon B., Sciurba J.C., Gieseck R.L., Thompson R.W., White S., Abbas A.R., Jackman J., Wu L.C., Egen J.G., Heaney L.G., Ramalingam T.R., Arron J.R., Wynn T.A., Bradding P. Th2 and Th17 inflammatory pathways are reciprocally regulated in asthma. Sci. Transl. Med. 2015; 7(301):301ra129. https://doi.org/10.1126/scitranslmed.aab3142
Review
For citations:
Pirogov A.B., Prikhodko A.G., Pirogova N.A., Gassan D.A., Naumov D.E., Kolosov V.P., Perelman J.M. Types of immune response in patients with asthma and airway hyperresponsiveness to cold and hypoosmolar stimuli. Bulletin Physiology and Pathology of Respiration. 2024;(94):51-62. (In Russ.) https://doi.org/10.36604/1998-5029-2024-94-51-62