Indicators of oxidative homeostasis and genotoxicity in patients with asthma under exposure to solid suspended atmospheric particulate matter
https://doi.org/10.36604/1998-5029-2024-94-95-103
Abstract
Introduction. Parameters that characterize the intensity of peroxidation processes and genotoxicity in individuals with asthma, including under the influence of unfavourable environmental factors, can serve as indicators of the disease course. Therefore, there is a need to detail these parameters in asthma patients of different severity and control levels. Aim. To establish the characteristics of disruptions in oxidative homeostasis and genomic apparatus damage in individuals with mild-to-moderate asthma under the in vitro exposure to solid suspended atmospheric particulate matter (SPM). Materials and methods. An in vitro study included 244 asthma patients and 60 conditionally healthy individuals. Model suspensions (MS) simulating multicomponent atmospheric air pollution were used as the exposure load. We investigated total antioxidant activity (AOA), levels of malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), thioredoxin-1 (Trx-1), total glutathione (GSH), and oxidized glutathione (GSSG). Ratios of MDA/AOA and GSH/GSSG were calculated. The effects of SPM are presented as indices reflecting the parameters under the influence of MS and without it. Results. In moderate asthma, more pronounced changes in oxidative homeostasis indicators were registered under SPM exposure compared to mild asthma. In controlled asthma, the maximum differences in indices between groups with mild and moderate severity were observed in the levels of GSSG (1.6-fold increase) and Trx-1 (1.3-fold increase). In partially controlled asthma, the greatest changes were found in the MDA/AOA ratio (2.7-fold increase) and 8-OHdG levels (1.6- fold increase). Conclusion. As asthma severity worsens, there is an increase in oxidative damage to bioorganic molecules and the initiation of genomic damage, which activates the thioredoxin link of the antioxidant system responsible for repairing damaged DNA. Under SPM exposure, more pronounced disruptions of oxidative homeostasis and increased genotoxicity occur with asthma severity, despite the stimulation of reparative processes. Significant elevations in 8-OHdG and Trx-1 levels with increasing asthma severity and SPM exposure may indicate the potential use of these markers to assess disease progression in technogenic environmental conditions.
About the Authors
E. V. KondratyevaRussian Federation
Elena V. Kondratyeva, PhD (Biol.), Staff Scientist, Laboratory of Medical Ecology and Recreational Resources
73g Russkaya Str., Vladivostok, 690105
T. I. Vitkina
Russian Federation
Tatiana I. Vitkina, PhD, DSc (Biol.), Professor of RAS, Head of Laboratory of Medical Ecology and Recreational Resources
73g Russkaya Str., Vladivostok, 690105
References
1. Veremchuk L.V., Vitkina T.I., Barskova L.S., Gvozdenko T.A., Mineeva E.E. Estimation of the size distribution of suspended particulate matters in the urban atmospheric surface layer and its influence on bronchopulmonary pathology // Atmosphere. 2021. Vol.12, Iss.8. https://doi.org/10.3390/atmos12081010
2. Kondratyeva E.V., Veremchuk L.V., Vitkina T.I. [Impact of air dust fractions on the immune system in patients with bronchopulmonary pathology]. Bûlleten' fiziologii i patologii dyhaniâ = Bulletin Physiology and Pathology of Respiration 2023; 88:27–34 (in Russian). https://doi.org/10.36604/1998-5029-2023-88-27-34
3. Barskova L.S., Vitkina T.I., Gvozdenko T.A., Kondratyeva E.V., Veremchuk L.V. Mechanism of response of alveolar macrophages in Wistar rats to the composition of atmospheric suspensions // Atmosphere. 2022. Vol.13, Iss.9. Article number:1500. https://doi.org/10.3390/atmos13091500
4. Global Initiative for Asthma (GINA). Global strategy for asthma management and prevention (Update 2023). URL: https://ginasthma.org/
5. Burnett R., Chen H., Szyszkowicz M., Fann N., Hubbell B., Pope C.A. 3rd, Apte J.S., Brauer M., Cohen A., Weichenthal S., Coggins J., Di Q., Brunekreef B., Frostad J., Lim S.S., Kan H., Walker K.D., Thurston G.D., Hayes R.B., Lim C.C., Turner M.C., Jerrett M., Krewski D., Gapstur S.M., Diver W.R., Ostro B., Goldberg D., Crouse D.L., Martin R.V., Peters P., Pinault L., Tjepkema M., van Donkelaar A., Villeneuve P.J., Miller A.B., Yin P., Zhou M., Wang L., Janssen N.A.H., Marra M., Atkinson R.W., Tsang H., Quoc Thach T., Cannon J.B., Allen R.T., Hart J.E., Laden F., Cesaroni G., Forastiere F., Weinmayr G., Jaensch A., Nagel G., Concin H., Spadaro J.V. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter // Proc. Natl. Acad. Sci. USA. 2018. Vol. 115, Iss.38. P.9592–9597. https://doi.org/10.1073/pnas.1803222115
6. Habib N., Pasha M.A., Tang D.D. Current understanding of asthma pathogenesis and biomarkers // Cells. 2022. Vol.11, Iss.17. Article number:2764. https://doi.org/10.3390/cells11172764
7. Gans M.D., Gavrilova T. Understanding the immunology of asthma: Pathophysiology, biomarkers, and treatments for asthma endotypes // Paediatr. Respir. Rev. 2020. Vol.36. P.118–127. https://doi.org/10.1016/j.prrv.2019.08.002
8. Chuchalin A.G., Khaltaev N., Antonov N.S., Galkin D.V., Manakov L.G., Antonini P., Murphy M., Solodovnikov A.G., Bousquet J., Pereira M.H., Demko I.V. Chronic respiratory diseases and risk factors in 12 regions of the Russian Federation // Int. J. Chron. Obstruct. Pulmon. Dis. 2014. Vol.9. P.963–974. https://doi.org/10.2147/COPD.S67283
9. Michaeloudes C., Abubakar-Waziri H., Lakhdar R., Raby K., Dixey P., Adcock I.M., Mumby S., Bhavsar P.K., Chung K.F. Molecular mechanisms of oxidative stress in asthma // Mol. Aspects Med. 2022. Vol.85. Article number:101026. https://doi.org/10.1016/j.mam.2021.101026
10. Karadogan B., Beyaz S., Gelincik A., Buyukozturk S., Arda N. Evaluation of oxidative stress biomarkers and antioxidant parameters in allergic asthma patients with different level of asthma control // J. Asthma. 2022. Vol.59, Iss.4. P.663–672. https://doi.org/10.1080/02770903.2020.1870129
11. Erdal H., Gunaydın F., Karaoglanoglu S. Oxidative stress in asthma // Aksaray university journal of sport and health researches. 2023. Vol.4, Iss.1. P.62–70. https://doi.org/10.54152/asujshr.1290539
12. Valacchi G., Magnani N., Woodby B., Ferreira S.M., Evelson P. Particulate matter induces tissue oxinflammation: from mechanism to damage // Antioxid. Redox Signal. 2020. Vol.33, Iss.4. P.308–326. https://doi.org/10.1089/ars.2019.8015
13. Kondratyeva E.V., Vitkina T.I., Veremchuk L.V. [Atmospheric ground layer pollution by suspended solid particles in areas with different technogenic loads]. Bûlleten' fiziologii i patologii dyhaniâ = Bulletin Physiology and Pathology of Respiration 2024; 91:68–76 (in Russian). https://doi.org/10.36604/1998-5029-2024-91-68-76
14. Sahiner U.M., Birben E., Erzurum S., Sackesen C., Kalayci O. Oxidative stress in asthma: part of the puzzle // Pediatr. Allergy Immunol. 2018. Vol.29, Iss.8. P.789–800. https://doi.org/10.1111/pai.12965
15. Kleniewska, P., Pawliczak R. The participation of oxidative stress in the pathogenesis of bronchial asthma // Biomed. Pharmacother. 2017. Vol.94. P.100–108. https://doi.org/10.1016/j.biopha.2017.07.066
16. Azab M., Khabour O.F., Alzoubi K.H., Mahmoud S.A., Anabtawi M., Quttina M. Assessment of genotoxicity of waterpipe smoking using 8-OHdG biomarker // Genet. Mol. Res. 2015. Vol.14, Iss.3. P.9555–9561. https://doi.org/10.4238/2015
17. Pilger A., Rudiger H.W. 8-Hydroxy-2'-deoxyguanosine as a marker of oxidative DNA damage related to occupational and environmental exposures // Int. Arch. Occup. Environ. Health. 2006. Vol.80, Iss.1. P.1–15. https://doi.org/10.1007/s00420-006-0106-7
18. Korkmaz K.S., Butuner B.D., Roggenbuck D. Detection of 8-OHdG as a diagnostic biomarker // J. Lab. Precis. Med. 2018. Vol.3. Article number:95. https://doi.org/10.21037/jlpm.2018.11.01
19. Zhou J., Wang C., Wu J., Fukunaga A., Cheng Z., Wang J., Yamauchi A., Yodoi J., Tian H. Anti-allergic and antiinflammatory effects and molecular mechanisms of thioredoxin on respiratory system diseases // Antioxid. Redox Signal. 2020. Vol.32, Iss.11. P.785–801. https://doi.org/10.1089/ars.2019.7807
20. El Hadri K., Smith R., Duplus E., El Amri C. Inflammation, oxidative stress, senescence in atherosclerosis: thioredoxine-1 as an emerging therapeutic target // Int. J. Mol. Sci. 2021. Vol.23, Iss1. Article number:77. https://doi.org/10.3390/ijms23010077
21. Mohamed I.N., Li L., Ismael S., Ishrat T., El-Remessy A.B. Thioredoxin interacting protein, a key molecular switch between oxidative stress and sterile inflammation in cellular response // World J. Diabetes. 2021. Vol.12, Iss12. P.1979– 1999. https://doi.org/10.4239/wjd.v12.i12.1979
22. Palacionyte J., Januskevicius A., Vasyle E., Rimkunas A., Bajoriuniene I., Vitkauskiene A., Miliauskas S., Malakauskas K. Novel serum biomarkers for patients with allergic asthma phenotype // Biomedicines. 2024. Vol.12, Iss.1. Article number:232. https://doi.org/10.3390/biomedicines12010232
23. Hanschmann E.M., Berndt C., Hecker C., Garn H., Bertrams W., Lillig C.H., Hudemann C. Glutaredoxin 2 reduces asthma-like acute airway inflammation in mice // Front. Immunol. 2020. Vol.11. Article number:561724. https://doi.org/10.3389/fimmu.2020.561724
24. Boukhenouna S., Wilson M.A., Bahmed K., Kosmider B. Reactive oxygen species in chronic obstructive pulmonary disease // Oxid. Med. Cell Longev. 2018. Vol. 2018. Article number:5730395. https://doi.org/10.1155/2018/5730395
25. Wang J., Zhou J., Wang C., Fukunaga A., Li S., Yodoi J., Tian H. Thioredoxin-1: A promising target for the treatment of allergic diseases // Front Immunol. 2022. Vol.13. Article number:883116. https://doi.org/10.3389/fimmu.2022.883116
26. Chew S., Kolosowska N., Saveleva L., Malm T., Kanninen K.M. Impairment of mitochondrial function by particulate matter: Implications for the brain // Neurochem. Int. 2020. Vol.135. Article number:104694. https://doi.org/10.1016/j.neuint.2020.104694
27. Hu W., Wang Y., Wang T., Ji Q., Jia Q., Meng T., Ma S., Zhang Z., Li Y., Chen R., Dai Y., Luan Y., Sun Z., Leng S., Duan H., Zheng Y. Ambient particulate matter compositions and increased oxidative stress: exposure-response analysis among high-level exposed population // Environ. Int. 2021. Vol.147. Article number:106341. https://doi.org/10.1016/j.envint.2020.106341
28. Golokhvast K., Vitkina T., Gvozdenko T., Kolosov V., Yankova V., Kondratieva E., Gorkavaya A., Nazarenko A., Chaika V., Romanova T., Karabtsov A., Perelman J., Kiku P., Tsatsakis A. Impact of atmospheric microparticles on the development of oxidative stress in healthy city/industrial seaport resident // Oxid. Med. Cell. Longev. 2015. Vol.2015. Article number:412173. https://doi.org/10.1155/2015/412173
29. Vitkina T.I., Barskova L.S., Zyumchenko N.E., Tokmakova N.P., Gvozdenko T.A., Golokhvast K.S. [Balance of glutathione-related processes in alveolar macrophages under exposure to suspended particulate matter of atmospheric air in of Wistar rats]. Gigiena i sanitariya = Hygiene and Sanitation 2020; 99(2):200–205 (in Russian). https://doi.org/10.47470/0016-9900-2020-99-2-200-205
30. Barskova L.S., Vitkina T.I. [Regulation by thiol disulfide and antioxidant systems of oxidative stress induced by atmospheric suspended particles]. Bûlleten' fiziologii i patologii dyhaniâ = Bulletin Physiology and Pathology of Respiration 2019; 73:112–124 (in Russian). https://doi.org/10.36604/1998-5029-2019-73-112-124
Review
For citations:
Kondratyeva E.V., Vitkina T.I. Indicators of oxidative homeostasis and genotoxicity in patients with asthma under exposure to solid suspended atmospheric particulate matter. Bulletin Physiology and Pathology of Respiration. 2024;(94):95-103. (In Russ.) https://doi.org/10.36604/1998-5029-2024-94-95-103