Preview

Bulletin Physiology and Pathology of Respiration

Advanced search

Features of interaction between selective lipid metabolites and immune system signaling molecules in patients with asthma

https://doi.org/10.36604/1998-5029-2024-94-104-110

Abstract

Introduction. Lipid metabolism is a key component in many pathophysiological processes, and its disruption can play a significant role in the development of chronic inflammation in asthma. Aim. To determine the nature of the interaction between fatty acids (FAs) and their derivatives with cytokine parameters of the immune system and their contribution to systemic inflammation in patients with asthma. Materials and methods. The spectrum of FAs in the plasma of patients with asthma was analyzed using gas chromatography-mass spectrometry. Levels of endogenous fatty acid ethanolamides (NAEs) were measured using high-performance liquid chromatography with mass spectrometry. Cytokine levels were determined by enzyme-linked immunosorbent assay (ELISA). The degree of interaction between the parameters was assessed using systemic analysis based on the integral coupling index (D). Results. It was established that the immune system response was most strongly associated with the relative content of n-6 polyunsaturated fatty acids. Modification of the FA composition was most significantly linked with interleukins (IL) 17A, 10, 4, and 6. Endogenous NAEs—arachidonoylethanolamide (AEA, 20:4n6) and docosahexaenoylethanolamide (DHEA, 22:6n3)—showed significant involvement in cytokine regulation in mild asthma. NAE 20:4n6 had the strongest association with IL-17A, interferon-γ, tumor necrosis factor (TNF)-α, and IL-2; NAE 22:6n3 was associated with IL-17A, IL-6, and TNF-α. Conclusion. The study established the contribution of disturbances in trigger parameters of lipid metabolism to systemic inflammation. Modification of FA composition and disruption of the synthesis of their mediators lead to dysregulation of the cytokine network of the immune system, which may contribute to the development and chronicity of systemic inflammatory reactions in patients with asthma.

About the Authors

T. I. Vitkina
Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration – Research Institute of Medical Climatology and Rehabilitative Treatment
Russian Federation

Tatyana I. Vitkina, PhD, DSc (Biol.), Professor of RAS, Head of the Laboratory of Medical Ecology and Recreational Resources

73g Russkaya Str., Vladivostok, 690105



I. S. Kovalenko
Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration – Research Institute of Medical Climatology and Rehabilitative Treatment
Russian Federation

Ivan S. Kovalenko, Postgraduate student, Laboratory of Biomedical Research

73g Russkaya Str., Vladivostok, 690105



N. V. Bocharova
Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration – Research Institute of Medical Climatology and Rehabilitative Treatment
Russian Federation

Natalia V. Bocharova, PhD (Biol.), Staff Scientist, Laboratory of Biomedical Research

73g Russkaya Str., Vladivostok, 690105



T. P. Novgorodtseva
Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration – Research Institute of Medical Climatology and Rehabilitative Treatment
Russian Federation

Tatiana P. Novgorodtseva, PhD, DSc (Biol.), Рrofessor, Deputy Director on Scientific Work, Main Staff Scientist of Laboratory of Biomedical Research

73g Russkaya Str., Vladivostok, 690105



E. V. Ermolenko
A.V. Zhirmunsky National Scientific Center of Marine Biology Far Eastern Branch, Russian Academy of Sciences
Russian Federation

EkaterinaV. Ermolenko, Ph.D (Biol.), Senior Staff Scientist, Laboratory of Comparative Biochemistry

17 Palchevskoko Str., Vladivostok, 690041



References

1. Kytikova O.Yu., Denisenko Yu.K., Novgorodtseva T.P., Bocharova N.V., Kovalenko I.S. Fatty acid epoxides in the regulation of the inflammation // Biomed. Chem. 2022. Vol.68, Iss.3. P.177–189. https://doi.org/10.18097/PBMC20226803177

2. Kytikova O.Yu., Denisenko Yu.K., Novgorodtseva T.P., Kovalenko I.S., Antonyuk M.V. Polyunsaturated fatty acids and lipid mediators controlling chronic inflammation in asthma // ROMJ. 2023. Vol.12, Iss.2. Article number:e201. https://doi.org/10.15275/rusomj.2023.0201

3. Rodrigues H.G., Takeo S.F., Curi R., Vinolo M.A. Fatty acids as modulators of neutrophil recruitment, function and survival // Eur. J. Pharmacol. 2016. Vol.15, Iss.785. P.50–58. https://doi.org/10.1016/j.ejphar.2015.03.098

4. Hidalgo M.A., Carretta M.D., Burgos R.A. Long chain fatty acids as modulators of immune cells function: contribution of FFA1 and FFA4 receptors // Front. Physiol. 2022. Vol.12. Article number:668330. https://doi.org/10.3389/fphys.2021

5. Alhouayek M., Bottemanne P., Makriyannis A., Muccioli G.G. N-acylethanolamine-hydrolyzing acid amidase and fatty acid amide hydrolase inhibition differentially affect N-acylethanolamine levels and macrophage activation // Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2017. Vol.1862, Iss.5. P.474–484. https://doi.org/10.1016/j.bbalip.2017.01.001

6. Global Initiative for Asthma (GINA). Global strategy for asthma management and prevention (Update 2023). URL: https://ginasthma.org/wp-content/uploads/2023/07/GINA-2023-Full-report-23_07_06-WMS.pdf

7. Bligh E.G., Dyer W.J. A rapid method of total lipid extraction and purification // Can. J. Biochem. Physiol. 1959. Vol.37, №8. P.911–917. https://doi.org/10.1139/o59-099

8. Denisenko Yu.K., Novgorodtseva T.P., Zhukova N.V., Antonyuk M.V., Lobanova E.G., Kalinina E.P. [Association of fatty acid metabolism with systemic inflammatory response in chronic respiratory diseases]. Biomed. chem. 2016; 3(62):341–347 (in Russian). https://doi.org/10.18097/PBMC20166203341

9. Vitkina T.I., Veremchuk L.V., Mineeva E.E., Gvozdenko T.A., Antonyuk M.V., Novgorodtseva T.P., Grigorieva E.A. The influence of weather and climate on patients with respiratory diseases in Vladivostok as a global health implication // J. Environ. Health Sci. Eng. 2019. Vol.17, №2. С.907–916. https://doi.org/10.1007/s40201-019-00407-5

10. Hong L., Herjan T., Bulek K., Xiao J., Comhair S., Erzurum S.C., Xiaoxia L., Liu C. Mechanisms of Corticosteroid resistance in type 17 asthma // J. Immunol. 2022. Vol.209, №10. P.1860–1869. https://doi.org/10.4049/jimmunol.2200288

11. Carlini V., Noonan D.M., Abdalalem E., Goletti D., Sansone C., Calabrone L., Albini A. The multifaceted nature of IL-10: regulation, role in immunological homeostasis and its relevance to cancer, COVID-19 and post-COVID conditions // Front. Immunol. 2023, Vol.14. Article number:1161067. https://doi.org /10.3389/fimmu.2023.1161067

12. Nur Husna S.M., Md Shukri N., Mohd Ashari N.S., Wong K.K. IL-4/IL-13 axis as therapeutic targets in allergic rhinitis and asthma // PeerJ. 2022. Vol.10. Article number:e13444. https://doi.org/10.7717/peerj.1344

13. Denisenko Yu.K., Novgorodtseva T.P., Vitkina T.I., Knyshova V.V., Antonyuk M.V., Bocharova N.V., Kytikova O. Yu. Associations of fatty acid composition in leukocyte membranes with systemic inflammation in chronic obstructive pulmonary disease progression // ROMJ. 2022. Vol.11, №4. Article number:e0401. https://doi.org/10.15275/rusomj.2022.0401

14. Ma S., Ming Y., Wu J., Cui G. Cellular metabolism regulates the differentiation and function of T-cell subsets // Cell. Mol. Immunol. 2024. Vol.21, Iss.5. P.419–435. https://doi.org/10.1038/s41423-024-01148-8

15. Novgorodtseva T.P., Gvozdenko T.A., Vitkina T.I., Denisenko Yu.K., Antonyuk M.V., Knyshova V.V. Regulatory signal mechanisms of systemic inflammation in respiratory pathology // ROMJ. 2019. Т. 8. № 1. С. 106. https://doi.org/10.15275/rusomj.2019.0106

16. Santa-Maria C., López-Enriquez S., Montserrat-de la Paz S., Geniz I., Reyes-Quiroz M.E., Moreno M., Palomares F., Sobrino F., Alba G. Update on anti-inflammatory molecular mechanisms induced by oleic acid // Nutrients. 2023. Vol.15, Iss.1. Article number:224. https://doi.org/10.3390/nu15010224

17. Silva-Martinez G.A., Rodriguez-Rios D., Vaquero A., Esteller M., Carmona F.J., Moran S., Nielsen F.C., Wickstrom-Lindholm M., Wrobel K., Wrobel K., Barbosa-Sabanero G., Zaina S., Lund G. Arachidonic and oleic acid exert distinct effects on the DNA methylome // Epigenetics. 2016. Vol.11, Iss.5. P.321–334. https://doi.org/10.1080/15592294.2016.1161873

18. Barrie N., Manolios N. The endocannabinoid system in pain and inflammation: Its relevance to rheumatic disease // Eur. J. Rheumatol. 2017. Vol.4, Iss.3. P.210–218. https://doi.org/10.5152/eurjrheum.2017.17025

19. Chiurchi V., Battistini L., Maccarrone M. Endocannabinoid signalling in innate and adaptive immunity // Immunology. 2015. Vol.144, Iss.3. P.352–364. https://doi.org/10.1111/imm.12441

20. Tyrtyshnaia A., Konovalova S., Ponomarenko A., Egoraeva A., Manzhulo I. Fatty acid-derived N-acylethanolamines dietary supplementation attenuates neuroinflammation and cognitive impairment in LPS murine model // Nutrients. 2022. Vol.14. Vol.18. Article number:3879. https://doi.org/10.3390/nu14183879

21. Rahaman O., Ganguly D. Endocannabinoids in immune regulation and immunopathologies // Immunology. 2021. Vol.164, Iss.2. P.242–252. https://doi.org/10.1111/imm.13378

22. Kurlyandchik I., Lauche R., Tiralongo E., Warne L.N., Schloss J. Plasma and interstitial levels of endocannabinoids and N-acylethanolamines in patients with chronic widespread pain and fibromyalgia: a systematic review and meta-analysis // Pain Rep. 2022. Vol.7, Iss.6. Article number:e1045. https://doi.org/10.1097/PR9.0000000000001045


Review

For citations:


Vitkina T.I., Kovalenko I.S., Bocharova N.V., Novgorodtseva T.P., Ermolenko E.V. Features of interaction between selective lipid metabolites and immune system signaling molecules in patients with asthma. Bulletin Physiology and Pathology of Respiration. 2024;(94):104-110. (In Russ.) https://doi.org/10.36604/1998-5029-2024-94-104-110

Views: 63


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-5029 (Print)