Efficacy of combined folic acid, cyanocobalamin, and pyridoxine hydrochloride therapy in the comprehensive management of pneumonia associated with COVID-19
https://doi.org/10.36604/1998-5029-2025-95-40-57
Abstract
Aim. To evaluate the clinical efficacy and the effect on serum homocysteine levels of combined folic acid, cyanocobalamin, and pyridoxine hydrochloride therapy in the comprehensive treatment of pneumonia in hospitalized patients with COVID-19.
Materials and methods. An open-label, prospective, comparative study included 75 hospitalized patients with moderate to severe pneumonia associated with COVID-19 confirmed by detection of SARS-CoV-2 RNA in the respiratory tract. The main group consisted of 28 patients who received micronutrient therapy with 30 mg/day of folic acid plus cyanocobalamin and pyridoxine in addition to standard treatment. The comparison group comprised 47 patients who did not receive additional micronutrient therapy. The Charlson Comorbidity Index was 1.14 ± 0.93 in the main group and 0.47 ± 0.69 in the comparison group (p ≤ 0.001). Disease severity before and after treatment was assessed using the NEWS, qSOFA, 4C Mortality, and WHO Ordinal scales. Chest computed tomography (CT) was performed. Laboratory parameters included complete blood count, serum levels of C-reactive protein (CRP), ferritin, lactate dehydrogenase (LDH), homocysteine, triglycerides, and low- and high-density lipoprotein cholesterol (LDL, HDL).
Results. In the main group, elimination period of SARS-CoV-2 RNA was achieved in 7.2 ± 3.4 days versus 15.6 ± 6.3 days in the comparison group (p < 0.001). After micronutrient therapy, disease severity decreased according to qSOFA and 4C Mortality scales. The main group showed a reduction in the total pneumonia volume from 32.0 (19.8–73.0)% to 26.5 (11.8–50.8)% (p = 0.035) and a reduction in the volume of parenchymal consolidation from 9.0 (0.0–37.3)% to 2.0 (0.0–17.0)% (p = 0.027). In the comparison group, there was no decrease in the total volume of lung involvement, and the area of parenchymal consolidation increased. These clinical and CT findings were associated with reductions in CRP, serum homocysteine, and LDL levels. Multiple linear regression models demonstrated that administration of the folic acid, cyanocobalamin, and pyridoxine hydrochloride combination shortened the elimination period of SARS-CoV-2 RNA from the respiratory tract (regression coefficient β = –8.648 ± 1.781; p < 0.001) and contributed to a decrease in parenchymal consolidation volume after treatment (β = –13.492 ± 4.834; p = 0.011), with the effect also linked to baseline LDH levels (β = 0.0235 ± 0.00857; p = 0.008) and patient age (β = 0.167 ± 0.0608; p = 0.008).
Conclusion. The use of folic acid, cyanocobalamin, and pyridoxine hydrochloride in the comprehensive management of patients with COVID-19-associated pneumonia is associated with a shorter SARS-CoV-2 RNA elimination period from the upper respiratory tract, a more pronounced reduction in disease severity, and a decreased extent of lung parenchymal consolidation. These effects coincide with lower serum homocysteine levels.
About the Authors
I. Ya. TseymakhRussian Federation
Irina Ya. Tseymakh, MD, PhD, DSc (Med.), Associate Professor, Head of the Department of Pulmonology and Phthisiology with a Course of Postgraduate Education
Barnaul
D. E. Bogachev
Russian Federation
Dmitry E. Bogachev, MD, Assistant of the Department of Pulmonology and Phthisiology with a Course of Postgraduate Education
Barnaul
A. Yu. Zhbanov
Russian Federation
Andrey Yu. Zhbanov, MD, Head of the Radiology Department
Barnaul
A. N. Karkavina
Russian Federation
Anna N. Karkavina, MD, PhD (Med.), Chief Physician, «City Hospital No. 4 named after N.P. Gulla, Barnaul»
Barnaul
T. A. Kornilova
Russian Federation
Tatyana A. Kornilova, MD, Head of the Pulmonology Department
Barnaul
References
1. Kouchek M., Aghakhani K., Memarian A. Demographic study of patients' mortality rate before and after the COVID-19 outbreak: a cross-sectional study. Health Sci. Rep. 2024; 7(2):e1845. https//doi.org/10.1002/hsr2.1845
2. Shestakova M.V., Vikulova O.K., Elfimova A.R., Deviatkin A.A., Dedov I.I., Mokrysheva N.G. Risk factors for COVID-19 case fatality rate in people with type 1 and type 2 diabetes mellitus: a nationwide retrospective cohort study of 235,248 patients in the Russian Federation. Front. Endocrinol. (Lausanne) 2022; 13:909874. https://doi.org/10.3389/fendo.2022.909874
3. Zhigarlovskiy B.A., Nikityuk N.F., Postupailo V.B., Goryaev A.A., Belov E.V., Nosov N.Yu., Karmishin A.M., Kruglov A.A., Borisevich I.V. Epidemiological characteristics of community-acquired pneumonia during the COVID-19 epidemic in the Russian Federation. Meditsina ekstremal'nykh situatsiy = Medicine of Extreme Situations 2021; 23(1):18–23 (in Russian). https//doi.org/10.47183/mes.2021.004
4. Hammer M.M., Sodickson A.D., Marshall A.D., Faust J.S. Prevalence of pneumonia among patients who died with COVID-19 infection in ancestral versus Omicron variant eras. Acad. Radiol. 2024; 31(1):1–6. https//doi.org/10.1016/j.acra.2023.05.008
5. D'Agnillo F., Walters K.A., Xiao Y., Sheng Z.M., Scherler K., Park J., Gygli S., Rosas L.A., Sadtler K., Kalish H., Blatti C.A. 3rd, Zhu R., Gatzke L., Bushell C., Memoli M.J., O'Day S.J., Fischer T.D., Hammond T.C., Lee R.C., Cash J.C., Powers M.E., O'Keefe G.E., Butnor K.J., Rapkiewicz A.V., Travis W.D., Layne S.P., Kash J.C., Taubenberger J.K. Lung epithelial and endothelial damage, loss of tissue repair, inhibition of fibrinolysis, and cellular senescence in fatal COVID-19. Sci. Transl. Med 2021; 13(620):eabj7790. https//doi.org/10.1126/scitranslmed.abj7790
6. He S., Blombäck M., Wallén H. COVID-19: not a thrombotic disease but a thromboinflammatory disease. Ups. J. Med. Sci. 2024; 129. https//doi.org/10.48101/ujms.v129.9863
7. Ulloque-Badaracco J.R., Al-Kassab-Córdova A., Alarcon-Braga E.A., Hernandez-Bustamante E.A., Huayta-Cortez M.A., Cabrera-Guzmán J.C., Robles-Valcarcel P., Benites-Zapata V.A. Association of vitamin B12, folate, and homocysteine with COVID-19 severity and mortality: a systematic review and meta-analysis. SAGE Open Med. 2024; 12:20503121241253957. https//doi.org/10.1177/20503121241253957
8. Tseymakh I., Bogachev D., Shemyakina I., Korenovsky Yu., Malchenko T., Tseymakh M. [The use of folic acid for the correction of folate metabolism disorders in respiratory diseases (systematic review)]. Meditsinskiy al′yans = Medical Alliance 2024; 12(1):19–33 (in Russian). https//doi.org/10.36422/23076348-2024-12-1-19-33
9. Vokhmyanina N.V., Gaykovaya L.B., Evteyeva D.A., Vlasov Yu.A. [Homocysteine as a predictor of the severity of coronavirus infection: biochemical justification]. Laboratornaya sluzhba = Laboratory Service 2022; 11(1):43–50 (in Russian). https://doi.org/10.17116/labs20221101143
10. Shulpekova Y., Nechaev V., Kardasheva S., Sedova A., Kurbatova A., Bueverova E., Kopylov A., Malsagova K., Dlamini J.C., Ivashkin V. The concept of folic acid in health and disease. Molecules 2021; 26(12):3731. https//doi.org/10.3390/molecules26123731
11. Yang Q., He G.W. Imbalance of homocysteine and H2S: significance, mechanisms, and therapeutic promise in vascular injury. Oxid. Med. Cell. Longev. 2019; 2019:7629673. https//doi.org/10.1155/2019/7629673
12. Perła-Kaján J., Twardowski T., Jakubowski H. Mechanisms of homocysteine toxicity in humans. Amino Acids. 2007; 32(4):561–572. https//doi.org/10.1007/s00726-006-0432-9
13. Bouvet M., Debarnot C., Imbert I., Selisko B., Snijder E.J., Canard B., Decroly E. In vitro reconstitution of SARScoronavirus mRNA cap methylation. PLoS Pathog. 2010; 6(4):e1000863. https//doi.org/10.1371/journal.ppat.1000863. Erratum in: PLoS Pathog. 2010;6(5). https//doi.org/10.1371/annotation/a0dde376-2eb1-4ce3-8887-d29f5ba6f162
14. Chen P., Wu M., He Y., Jiang B., He M.L. Metabolic alterations upon SARS-CoV-2 infection and potential therapeutic targets against coronavirus infection. Signal Transduct. Target. Ther. 2023; 8(1):237. https://doi.org/10.1038/s41392023-01510-8
15. Meisel E., Efros O., Bleier J., Beit Halevi T., Segal G., Rahav G., Leibowitz A., Grossman E. Folate levels in patients hospitalized with coronavirus disease 2019. Nutrients 2021; 13(3):812. https//doi.org/10.3390/nu13030812
16. Zabolotskikh I.B., Protsenko D.N., editors. [Intensive care. National guidelines. Vol.2]. Moscow: GEOTAR-Media; 2023 (in Russian). ISBN: 978-5-9704-7513-3.
17. McDonagh T.A., Metra M., Adamo M., Gardner R.S., Baumbach A., Böhm M., Burri H., Butler J., Čelutkienė J., Chioncel O., Cleland J.G.F., Crespo-Leiro M.G., Farmakis D., Gilard M., Heymans S., Hoes A.W., Jaarsma T., Jankowska E.A., Lainscak M., Lam C.S.P., Lyon A.R., McMurray J.J.V., Mebazaa A., Mindham R., Muneretto C., Francesco Piepoli M., Price S., Rosano G.M.C., Ruschitzka F., Skibelund A.K. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart. J. 2023; 44(37):3627-3639. https//doi.org/10.1093/eurheartj/ehad195. Erratum in: Eur. Heart. J. 2024; 45(1):53. https//doi.org/10.1093/eurheartj/ehad613
18. Cosentino F., Grant P.J., Aboyans V., Bailey C.J., Ceriello A., Delgado V., Federici M., Filippatos G., Grobbee D.E., Hansen T.B., Huikuri H.V., Johansson I., Jüni P., Lettino M., Marx N., Mellbin L.G., Östgren C.J., Rocca B., Roffi M., Sattar N., Seferović P.M., Sousa-Uva M., Valensi P., Wheeler D.C. 2019 ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur. Heart. J. 2020; 41(2):255–323. https//doi.org/10.1093/eurheartj/ehz486. Erratum in: Eur. Heart. J. 2020; 41(45):4317. https//doi.org/10.1093/eurheartj/ehz828
19. Kudryavtsev Y.S., Beregov M.M., Berdalin A.B., Lelyuk V.G. [Comparison of the main staging systems for assessing the severity of lung injury in patients with COVID-19 and evaluation of their predictive value]. Vestnik rentgenologii i radiologii = Journal of Radiology and Nuclear Medicine 2021; 102(5):296–303 (in Russian). https://doi.org/10.20862/0042-4676-2021-102-5-296-303
20. [Prevention, diagnosis and treatment of the new coronavirus infectious disease (COVID-19). Temporary guidelines. Version 18]. Moscow: Ministerstvo zdravookhraneniya Rossiyskoy Federatsii; 2023 (in Russian). Available at: https://edu.rosminzdrav.ru/covid-190-for-all/#cz786 (accessed 31.10.2024)
21. Dodd L.E., Follmann D., Wang J., Koenig F., Korn L.L., Schoergenhofer C., Proschan M., Hunsberger S., Bonnett T., Makowski M., Belhadi D., Wang Y., Cao B., Mentre F., Jaki T. Endpoints for randomized controlled clinical trials for COVID-19 treatments. Clin. Trials. 2020; 17(5):472–482. https//doi.org/10.1177/1740774520939938
22. Vechorko V.I., Averkov O.V., Suponeva N.A., Piradov M.A., Zimin A.A., Yusupova D.G., Zaitsev A.B., Grishin D.V., Polekhina N.V., Naminov A.V., Ramchandani N.M., Knight S.R., Semple M.G., Harrison E.M. [Validation of the Russian version of the 4C Mortality Score and prediction of outcomes of severe COVID-19]. Infektsionnyye bolezni: novosti, mneniya, obucheniye = Infectious Diseases: News, Opinions, Training 2022; 11(1-40):57–63 (in Russian). https://doi.org/10.33029/2305-3496-2022-11-1-57-63
23. Granata V., Ianniello S., Fusco R., Urraro F., Pupo D., Magliocchetti S., Albarello F., Campioni P., Cristofaro M., Di Stefano F., Fusco N., Petrone A., Schininà V., Villanacci A., Grassi F., Grassi R., Grassi R. Quantitative analysis of residual COVID-19 lung CT features: consistency among two commercial software. J. Pers. Med. 2021; 11(11):1103. https//doi.org/10.3390/jpm11111103
24. Fervers P., Fervers F., Jaiswal A., Rinneburger M., Weisthoff M., Pollmann-Schweckhorst P., Kottlors J., Carolus H., Lennartz S., Maintz D., Shahzad R., Persigehl T. Assessment of COVID-19 lung involvement on computed tomography by deep-learning-, threshold-, and human reader-based approaches-an international, multi-center comparative study. Quant. Imaging Med. Surg. 2022; 12(11):5156–5170. https//doi.org/10.21037/qims-22-175
25. Kalan Sarı I., Keskin O., Seremet Keskin A., Elli Dağ H.Y., Harmandar O. Is homocysteine associated with the prognosis of COVID-19 pneumonia. Int. J. Clin. Pract. 2023; 2023:9697871. https://doi.org/10.1155/2023/9697871
26. Shawkat Ahmed H., Noori S.H. The importance of serum homocysteine as a biomarker in diabetic and obese COVID-19 patients. Cell. Mol. Biol. (Noisy-le-grand) 2023; 69(2):52–59. https://doi.org/10.14715/cmb/2023.69.2.9
27. D'Alessandro A., Ciavardelli D., Pastore A., Lupisella S., Cristofaro R.C., Di Felice G., Salierno R., Infante M., De Stefano A., Onetti Muda A., Morello M., Porzio O. Contribution of vitamin D3 and thiols status to the outcome of COVID-19 disease in Italian pediatric and adult patients. Sci. Rep. 2023; 13(1):2504. https://doi.org/10.1038/s41598-02329519-7. Erratum in: Sci. Rep. 2023; 13(1):4378. https://doi.org/10.1038/s41598-023-31323-2
28. Carpene G., Negrini D., Henry B.M., Montagnana M., Lippi G. Homocysteine in coronavirus disease (COVID-19): a systematic literature review. Diagnosis (Berl). 2022; 9(3):306–310. https//doi.org/10.1515/dx-2022-0042
29. Zhang Y., Pang Y., Xu B., Chen X., Liang S., Hu J., Luo X. Folic acid restricts SARS-CoV-2 invasion by methylating ACE2. Front. Microbiol. 2022; 13:980903. https//doi.org/10.3389/fmicb.2022.980903
30. Najafipour R., Mohammadi D., Momeni A., Moghbelinejad S. Effect of B12 and folate deficiency in hypomethylation of angiotensin I converting enzyme 2 gene and severity of disease among the acute respiratory distress syndrome patients. J. Clin. Lab. Anal. 2023; 37(5):e24846. https//doi.org/10.1002/jcla.24846
31. Boyko A.N., Shamalov N.A., Boyko O.V., Arinina Ye.E., Lyang O.V., Dubchenko Ye.A., Ivanov A.V., Kubatiyev A.A. [The first experience with Angiovit in the combination treatment of acute COVID-19 infection]. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics 2020; 12(3):82–86 (in Russian). https://doi.org/10.14412/2074-2711-2020-3-82-86
32. Singh S., Boyd S., Schilling W.H.K., Watson J.A., Mukaka M., White N.J. The relationship between viral clearance rates and disease progression in early symptomatic COVID-19: a systematic review and meta-regression analysis. J. Antimicrob. Chemother. 2024; 79(5):935–945. https://doi.org/10.1093/jac/dkae045
33. Wongnak P., Schilling W.H.K, Jittamala P., Boyd S., Luvira V., Siripoon T., Ngamprasertchai T., Batty E.M., Singh S., Kouhathong J., Pagornrat W., Khanthagan P., Hanboonkunupakarn B., Poovorawan K., Mayxay M., Chotivanich K., Imwong M., Pukrittayakamee S., Ashley E.A., Dondorp A.M., Day N.P.J., Teixeira M.M., Piyaphanee W., Phumratanaprapin W., White N.J., Watson J.A. Temporal changes in SARS-CoV-2 clearance kinetics and the optimal design of antiviral pharmacodynamic studies: an individual patient data meta-analysis of a randomised, controlled, adaptive platform study (PLATCOV). Lancet Infect. Dis. 2024; 24(9):953–963. https://doi.org/10.1016/S1473-3099(24)00183-X
34. Horby P., Lim W.S., Emberson J.R., Mafham M., Bell J.L., Linsell L., Staplin N., Brightling C., Ustianowski A., Elmahi E., Prudon B., Green C., Felton T., Chadwick D., Rege K., Fegan C., Chappell L.C., Faust S.N., Jaki T., Jeffery K., Montgomery A., Rowan K., Juszczak E., Baillie J.K., Haynes R., Landray M.J. Dexamethasone in hospitalized patients with COVID-19. N. Engl. J. Med. 2021; 384(8):693–704. https://doi.org/10.1056/NEJMoa2021436
35. Arfijanto M.V., Asmarawati T.P., Bramantono B., Rusli M., Rachman B.E., Mahdi B.A., Nasronudin N., Hadi U. Duration of SARS-CoV-2 RNA shedding is significantly influenced by disease severity, bilateral pulmonary infiltrates, antibiotic treatment, and diabetic status: consideration for isolation period. Pathophysiology 2023; 30(2):186–198. https//doi.org/10.3390/pathophysiology30020016
36. Elias K.M., Khan S.R., Stadler E., Schlub T.E., Cromer D., Polizzotto M.N., Kent S.J., Turner T., Davenport M.P., Khoury D.S. Viral clearance as a surrogate of clinical efficacy for COVID-19 therapies in outpatients: a systematic review and meta-analysis. Lancet Microbe 2024; 5(5):e459–e467. https//doi.org/10.1016/S2666-5247(23)00398-1
37. Babar M., Jamil H., Mehta N., Moutwakil A., Duong T.Q. Short- and long-term chest-CT findings after recovery from COVID-19: a systematic review and meta-analysis. Diagnostics (Basel) 2024; 14(6):621. https//doi.org/10.3390/diagnostics14060621
38. Tyurin I.E., Strutynskaya A.D. [Imaging of lung pathology in COVID-19 (literature review and own data)]. Pul'monologiya = Russian Pulmonology 2020; 30(5):658–670 (in Russian). https//doi.org/10.18093/0869-0189-2020-30-5658-670
39. Saeed G.A., Gaba W., Shah A., Al Helali A.A., Raidullah E., Al Ali A.B., Elghazali M., Ahmed D.Y., Al Kaabi S.G., Almazrouei S. Correlation between chest CT severity scores and the clinical parameters of adult patients with COVID19 pneumonia. Radiol. Res. Pract. 2021; 2021:6697677. https//doi.org/10.1155/2021/6697677
Review
For citations:
Tseymakh I.Ya., Bogachev D.E., Zhbanov A.Yu., Karkavina A.N., Kornilova T.A. Efficacy of combined folic acid, cyanocobalamin, and pyridoxine hydrochloride therapy in the comprehensive management of pneumonia associated with COVID-19. Bulletin Physiology and Pathology of Respiration. 2025;(95):40-57. (In Russ.) https://doi.org/10.36604/1998-5029-2025-95-40-57