Analysis of early molecular changes associated with COPD via transcriptomic profiling of A549 cells in an in vitro experiment
https://doi.org/10.36604/1998-5029-2025-97-8-24
Abstract
Introduction. Chronic obstructive pulmonary disease (COPD) is a common condition of high social importance, in which the response of alveolar epithelium to cigarette smoke may play a critical role in disease pathogenesis.
Aim. To comprehensively characterize transcriptomic alterations in A549 cells in response to cigarette smoke extract (CSE), including differential gene expression and key signaling pathways, and to evaluate their potential contribution to pathological processes associated with COPD.
Materials and methods. A549 cells were cultured in DMEM until reaching 80% confluency, then incubated with 5% CSE or maintained under control conditions for 24 hours (n = 3 per group). Total RNA was extracted and enriched for mRNA. Sequencing was performed on the MGISEQ-200 platform in SE50 mode. Data analysis included read mapping (Salmon), differential gene expression analysis (DESeq2), and functional enrichment (Cytoscape).
Results. CSE exposure was associated with signs of actin cytoskeleton disorganization (Rho GTPase inhibition, ACTB downregulation) and endoplasmic reticulum stress, along with paradoxical activation of mTORC1 signaling amid suppression of transcription, proliferation, and apoptosis – a combination that may represent a state of metabolically active cellular stasis. Concomitantly, proteasomal degradation and antigen presentation of likely defective self-proteins were enhanced, possibly promoting immune surveillance. While proinflammatory signaling was generally attenuated, increased expression of IL1A, SPP1 and CSF3 may facilitate recruitment and activation of neutrophils, macrophages, and monocytes. Impaired efferocytosis (via upregulation of ANXA5) and defective apoptosis induction by cytotoxic T cells (due to disrupted granzyme endocytosis and inhibition of caspases) may lead to persistent inflammation with an autoimmune component.
Conclusion. Activation of mTORC1 signaling and autoantigen presentation under endoplasmic reticulum stress, as well as a potential reduction in the ability of cytotoxic T cells to induce apoptosis, may represent key pathogenic mechanisms of COPD, mediating alveolar epithelial injury induced by cigarette smoke.
About the Authors
D. E. NaumovRussian Federation
Denis E. Naumov, PhD (Med.), Head of Laboratory of Molecular and Translational Research
22 Kalinina Str., Blagoveshchensk, 675000
O. O. Kotova
Russian Federation
Olesya O. Kotova, PhD (Med.), Senior Staff Scientist, Laboratory of Mechanisms of Virus-Associated Developmental Pathology
22 Kalinina Str., Blagoveshchensk, 675000
D. A. Gassan
Russian Federation
Dina A. Gassan, PhD (Med.), Head of Laboratory of Mechanisms of Virus-Associated Developmental Pathology
22 Kalinina Str., Blagoveshchensk, 675000
I. Yu. Sugaylo
Russian Federation
Ivana Yu. Sugaylo, PhD (Med.), Staff Scientist, Laboratory of Molecular and Translational Research
22 Kalinina Str., Blagoveshchensk, 675000
References
1. Wang Z., Lin J., Liang L., Huang F., Yao X., Peng K., Gao Y., Zheng J. Global, regional, and national burden of chronic obstructive pulmonary disease and its attributable risk factors from 1990 to 2021: an analysis for the Global Burden of Disease Study 2021. Respir. Res. 2025; 26(1):2. https://doi.org/10.1186/s12931-024-03051-2
2. Ruaro B., Salton F., Braga L., Wade B., Confalonieri P., Volpe M.C., Baratella E., Maiocchi S., Confalonieri M. The history and mystery of alveolar epithelial type II cells: focus on their physiologic and pathologic role in lung. Int. J. Mol. Sci. 2021; 22(5):2566. https://doi.org/10.3390/ijms22052566
3. Hu Y., Hu Q., Ansari M., Riemondy K., Pineda R., Sembrat J., Leme A.S., Ngo K., Morgenthaler O., Ha K., Gao B., Janssen W.J., Basil M.C., Kliment C.R., Morrisey E., Lehmann M., Evans C.M., Schiller H.B., Königshoff M. Airway- derived emphysema-specific alveolar type II cells exhibit impaired regenerative potential in COPD. Eur. Respir. J. 2024; 64(6):2302071. https://doi.org/10.1183/13993003.02071-2023
4. Yu H., Lin Y., Zhong Y., Guo X., Lin Y., Yang S., Liu J., Xie X., Sun Y., Wang D., Li B., Ran P., Dai J. Impaired AT2 to AT1 cell transition in PM2.5-induced mouse model of chronic obstructive pulmonary disease. Respir. Res. 2022; 23(1):70. https://doi.org/10.1186/s12931-022-01996-w
5. Lee Y., Song J., Jeong Y., Choi E., Ahn C., Jang W. Meta-analysis of single-cell RNA-sequencing data for depicting the transcriptomic landscape of chronic obstructive pulmonary disease. Comput. Biol. Med. 2023; 167:107685. https://doi.org/10.1016/j.compbiomed.2023.107685
6. Lieber M., Smith B., Szakal A., Nelson-Rees W., Todaro G. A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. Int. J. Cancer 1976; 17(1):62–70. https://doi.org/10.1002/ijc.2910170110
7. Yanagihara T., Zhou Q., Tsubouchi K., Revill S., Ayoub A., Gholiof M., Chong S.G., Dvorkin-Gheva A., Ask K., Shi W., Kolb M.R. Intrinsic BMP inhibitor Gremlin regulates alveolar epithelial type II cell proliferation and differentiation. Biochem. Biophys. Res. Commun. 2023; 656:53–62. https://doi.org/10.1016/j.bbrc.2023.03.020
8. Wickenden J.A., Clarke M.C., Rossi A.G., Rahman I., Faux S.P., Donaldson K., MacNee W. Cigarette smoke prevents apoptosis through inhibition of caspase activation and induces necrosis. Am. J. Respir. Cell Mol. Biol. 2003; 29(5):562– 570. https://doi.org/10.1165/rcmb.2002-0235OC
9. Takahara T., Amemiya Y., Sugiyama R., Maki M., Shibata H. Amino acid-dependent control of mTORC1 signaling: a variety of regulatory modes. J. Biomed. Sci. 2020; 27(1):87. https://doi.org/10.1186/s12929-020-00679-2
10. Mitani A., Ito K., Vuppusetty C., Barnes P.J., Mercado N. Restoration of corticosteroid sensitivity in chronic obstructive pulmonary disease by inhibition of mammalian target of rapamycin. Am. J. Respir. Crit. Care Med. 2016; 193(2):143–153. https://doi.org/10.1164/rccm.201503-0593OC
11. Carroll B., Nelson G., Rabanal-Ruiz Y., Kucheryavenko O., Dunhill-Turner N.A., Chesterman C.C., Zahari Q., Zhang T., Conduit S.E., Mitchell C.A., Maddocks O.D.K., Lovat P., von Zglinicki T., Korolchuk V.I. Persistent mTORC1 signaling in cell senescence results from defects in amino acid and growth factor sensing. J. Cell Biol. 2017; 216(7):1949– 1957. https://doi.org/10.1083/jcb.201610113
12. Wang A., Li Z., Sun Z., Liu Y., Zhang D., Ma X. Potential mechanisms between HF and COPD: new insights from bioinformatics. Curr. Probl. Cardiol. 2023; 48(3):101539. https://doi.org/10.1016/j.cpcardiol.2022.101539
13. Jun I., Choi Y.J., Kim B.R., Lee H.K., Seo K.Y., Kim T.I. Activation of the mTOR pathway enhances PPARγ/SREBP-mediated lipid synthesis in human meibomian gland epithelial cells. Sci. Rep. 2024; 14(1):28118. https://doi.org/10.1038/s41598-024-73969-6
14. Matsushita M., Futawaka K., Hayashi M., Murakami K., Mitsutani M., Hatai M., Watamoto Y., Yoshikawa N., Nakamura K., Tagami T., Moriyama K. Cigarette smoke extract modulates functions of peroxisome proliferator-activated receptors. Biol. Pharm. Bull. 2019; 42(10):1628–1636. https://doi.org/10.1248/bpb.b18-00991
15. Bougarne N., Weyers B., Desmet S.J., Deckers J., Ray D.W., Staels B., De Bosscher K. Molecular actions of PPARα in lipid metabolism and inflammation. Endocr. Rev. 2018; 39(5):760–802. https://doi.org/10.1210/er.2018-00064
16. Sugaylo I.Yu., Naumov D.E., Gassan D.A., Kotova O.O., Konev A.V., Sheludko E.G. [Adenosine triphosphate level and capsaicin-induced changes in mitochondrial membrane potential in mononuclear cells of patients with chronic obstructive pulmonary disease]. Bûlleten' fiziologii i patologii dyhaniâ = Bulletin Physiology and Pathology of Respiration 2025; 96:33–44 (in Russian). https://doi.org/10.36604/1998-5029-2025-96-33-44
17. Yeap J.W., Ali I.A.H., Ibrahim B., Tan M.L. Chronic obstructive pulmonary disease and emerging ER stress-related therapeutic targets. Pulm. Pharmacol. Ther. 2023; 81:102218. https://doi.org/10.1016/j.pupt.2023.102218
18. Campellone K.G., Lebek N.M., King V.L. Branching out in different directions: Emerging cellular functions for the Arp2/3 complex and WASP-family actin nucleation factors. Eur. J. Cell Biol. 2023; 102(2):151301. https://doi.org/10.1016/j.ejcb.2023.151301
19. Malinova D., Fritzsche M., Nowosad C.R., Armer H., Munro P.M., Blundell M.P., Charras G., Tolar P., Bouma G., Thrasher A.J. WASp-dependent actin cytoskeleton stability at the dendritic cell immunological synapse is required for extensive, functional T cell contacts. J. Leukoc. Biol. 2016; 99(5):699–710. https://doi.org/10.1189/jlb.2A0215-050RR
20. Manoury B., Maisonneuve L., Podsypanina K. The role of endoplasmic reticulum stress in the MHC class I antigen presentation pathway of dendritic cells. Mol. Immunol. 2022; 144:44–48. https://doi.org/10.1016/j.molimm.2022.02.007
21. Granados D.P., Tanguay P.L., Hardy M.P., Caron E., de Verteuil D., Meloche S., Perreault C. ER stress affects processing of MHC class I-associated peptides. BMC Immunol. 2009; 10:10. https://doi.org/10.1186/1471-2172-10-10
22. Williams M., Todd I., Fairclough L.C. The role of CD8 + T lymphocytes in chronic obstructive pulmonary disease: a systematic review. Inflamm. Res. 2021; 70(1):11–18. https://doi.org/10.1007/s00011-020-01408-z
23. Tong M., Jun T., Nie Y., Hao J., Fan D. The Role of the Slit/Robo Signaling Pathway. J. Cancer 2019; 10(12):2694– 2705. https://doi.org/10.7150/jca.31877
24. Chi X., Wang S., Huang Y., Stamnes M., Chen J.L. Roles of rho GTPases in intracellular transport and cellular transformation. Int. J. Mol. Sci. 2013; 14(4):7089–7108. https://doi.org/10.3390/ijms14047089
25. Hoxhaj G., Manning B.D. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat. Rev. Cancer 2020; 20(2):74–88. https://doi.org/10.1038/s41568-019-0216-7
26. Sutherland C. What are the bona fide GSK3 substrates? Int. J. Alzheimers Dis. 2011; 2011:505607. https://doi.org/10.4061/2011/505607
27. Moya I.M., Halder G. Hippo-YAP/TAZ signalling in organ regeneration and regenerative medicine. Nat. Rev. Mol. Cell Biol. 2019; 20(4):211–226. https://doi.org/10.1038/s41580-018-0086-y
28. DiGiovanni G.T., Han W., Sherrill T.P., Taylor C.J., Nichols D.S., Geis N.M., Singha U.K., Calvi C.L., McCall A.S., Dixon M.M., Liu Y., Jang J.H., Gutor S.S., Polosukhin V.V., Blackwell T.S., Kropski J.A., Gokey J.J. Epithelial Yap/Taz are required for functional alveolar regeneration following acute lung injury. JCI Insight 2023; 8(19):e173374. https://doi.org/10.1172/jci.insight.173374
29. Finigan J.H., Downey G.P., Kern J.A. Human epоps://doi.org/10.1165/rcmb.2012-0100TR
30. Sun Z., Shushanov S., LeRoith D., Wood T.L. Decreased IGF type 1 receptor signaling in mammary epithelium during pregnancy leads to reduced proliferation, alveolar differentiation, and expression of insulin receptor substrate (IRS)- 1 and IRS-2. Endocrinology 2011; 152(8):3233–3245. https://doi.org/10.1210/en.2010-1296
31. Jiao Z., Ao Q., Ge X., Xiong M. Cigarette smoke extract inhibits the proliferation of alveolar epithelial cells and augments the expression of P21WAF1. J. Huazhong Univ. Sci. Technolog. Med. Sci. 2008; 28(1):6–10. https://doi.org/10.1007/s11596-008-0102-0
32. Tsutsumi A., Ozaki M., Chubachi S., Irie H., Sato M., Kameyama N., Sasaki M., Ishii M., Hegab A.E., Betsuyaku T., Fukunaga K. Exposure to cigarette smoke enhances the stemness of alveolar type 2 cells. Am. J. Respir. Cell Mol. Biol. 2020; 63(3):293–305. https://doi.org/10.1165/rcmb.2019-0188OC
33. Yokohori N., Aoshiba K., Nagai A.; Respiratory Failure Research Group in Japan. Increased levels of cell death and proliferation in alveolar wall cells in patients with pulmonary emphysema. Chest 2004; 125(2):626–632. https://doi.org/10.1378/chest.125.2.626
34. Uddin M.A., Barabutis N. P53 in the impaired lungs. DNA Repair (Amst.) 2020; 95:102952. https://doi.org/10.1016/j.dnarep.2020.102952
35. Hwang J.W., Rajendrasozhan S., Yao H., Chung S., Sundar I.K., Huyck H.L., Pryhuber G.S., Kinnula V.L., Rahman I. FOXO3 deficiency leads to increased susceptibility to cigarette smoke-induced inflammation, airspace enlargement, and chronic obstructive pulmonary disease. J. Immunol. 2011; 187(2):987–998. https://doi.org/10.4049/jimmunol.1001861
36. Meng C., Wang S., Wang X., Lv J., Zeng W., Chang R., Li Q., Wang X. Amphiregulin inhibits TNF-α-induced alveolar epithelial cell death through EGFR signaling pathway. Biomed. Pharmacother. 2020; 125:109995. https://doi.org/10.1016/j.biopha.2020.109995
37. Churg A., Wang R.D., Tai H., Wang X., Xie C., Wright J.L. Tumor necrosis factor-alpha drives 70% of cigarette smoke-induced emphysema in the mouse. Am. J. Respir. Crit. Care Med. 2004; 170(5):492–498. https://doi.org/10.1164/rccm.200404-511OC
38. Fujita M., Ouchi H., Ikegame S., Harada E., Matsumoto T., Uchino J., Nakanishi Y., Watanabe K. Critical role of tumor necrosis factor receptor 1 in the pathogenesis of pulmonary emphysema in mice. Int. J. Chron. Obstruct. Pulmon. Dis. 2016; 11:1705–1712. https://doi.org/10.2147/COPD.S108919
39. Kang T.H., Park J.H., Yang A., Park H.J., Lee S.E., Kim Y.S., Jang G.Y., Farmer E., Lam B., Park Y.M., Hung C.F. Annexin A5 as an immune checkpoint inhibitor and tumor-homing molecule for cancer treatment. Nat. Commun. 2020; 11(1):1137. https://doi.org/10.1038/s41467-020-14821-z
40. Kawano M., Nagata S. Efferocytosis and autoimmune disease. Int. Immunol. 2018; 30(12):551–558. https://doi.org/10.1093/intimm/dxy055
41. Xie B., Chen Q., Dai Z., Jiang C., Chen X. Progesterone (P4) ameliorates cigarette smoke-induced chronic obstructive pulmonary disease (COPD). Mol. Med. 2024; 30(1):123. https://doi.org/10.1186/s10020-024-00883-y
42. Reddy N.M., Vegiraju S., Irving A., Paun B.C., Luzina I.G., Atamas S.P., Biswal S., Ana N.A., Mitzner W., Reddy S.P. Targeted deletion of Jun/AP-1 in alveolar epithelial cells causes progressive emphysema and worsens cigarette smokeinduced lung inflammation. Am. J. Pathol. 2012; 180(2):562–574. https://doi.org/10.1016/j.ajpath.2011.10.029
Review
For citations:
Naumov D.E., Kotova O.O., Gassan D.A., Sugaylo I.Yu. Analysis of early molecular changes associated with COPD via transcriptomic profiling of A549 cells in an in vitro experiment. Bulletin Physiology and Pathology of Respiration. 2025;(97):8-24. (In Russ.) https://doi.org/10.36604/1998-5029-2025-97-8-24
JATS XML






















