Preview

Bulletin Physiology and Pathology of Respiration

Advanced search

THE ROLE OF FATTY ACIDS IN EMBRYONIC DEVELOPMENT (REVIEW)

https://doi.org/10.12737/article_5b985a4bcfb950.60653849

Abstract

The review provides information on the physiological role of medium-chain saturated and unsaturated (myristic, pentadecanoic) and long-chain (palmitic, stearic, oleic) fatty acids in embryonic development. The value of fatty acids in the formation of the lung surfactant of the developing fetus is shown. There is presented the information about the role of polyunsaturated acids of arachidonic and docosahexaenoic ω-6 family in the structural and functional development of the nervous system and the visual analyzer of the fetus and the newborn. The interdependent stimulating effect of unsaturated oleic and linoleic fatty acids on the differentiation of muscle cells is shown; the role of oleic and acids with 20 carbohydrate atoms in the mineralization of bone tissue is demonstrated; the value of oleic acid in the regulation of placental transport of amino acids through tol-like receptors 4 and cellular signaling is presented. The above mentioned factors allow drawing the conclusion about the need for further study of lipids as the main energy substrates, sources of plastic material, structural components of erythrocyte membranes, nerve tissue, visual analyzer, pulmonary surfactant and skeletal muscles. The accumulated data broadens the understanding of the role of lipids in metabolic processes, which will allow us to move from a fundamental research to practical aspects of the use of these substances in obstetrics and perinatology. In the long term, these results can be used to interpret and predict changes in metabolic disorders of lipids in various pathological conditions during pregnancy.

About the Author

N. A. Ishutina
Far Eastern Scientific Center of Physiology and Pathology of Respiration
Russian Federation


References

1. Боровик Т.Э., Грибакин С.Г., Скворцова В.А., Семенова Н.Н., Степанова Т.Н., Звонкова Н.Г. Длинноцепочечные полиненасыщенные жирные кислоты и их роль в детском питании. Обзор литературы // Вопросы современной педиатрии. 2012. Т.11, №4. С.21-28. https://doi.org/10.15690/vsp.v11i4.355

2. Гладышев М.И. Незаменимые полиненасыщенные жирные кислоты и их пищевые источники для человека // Journal of Siberian Federal University. Biology 4. 2012. №5. C.352-386. URL: http://elib.sfu-kras.ru/handle/2311/9554

3. Масловская А.А. Особенности липидного обмена у детей // Журнал Гродненского гос. мед. ун-та. 2010. № 2. С.12-15.

4. Abdallah D., Hamade E., Merhi R.A., Bassam B., Buchet R., Mebarek S. Fatty acid composition in matrix vesicles and in microvilli from femurs of chicken embryos revealed selective recruitment of fatty acids // Biochem. Biophys. Res. Commun. 2014. Vol.446, №4. P.1161-1164. doi: 10.1016/j.bbrc.2014.03.069

5. Agostoni C., Marangoni F., Lammardo A.M., Galli C., Giovannini M., Riva E. Long chain polyunsaturated fatty acids concentrations in human hindmilk are constant throughout 12 months of lactation // Adv. Exp. Med. Biol. 2001. Vol.501. P.157-161.

6. Bobinski R., Mikulska M. The ins and outs of maternal-fetal fatty acid metabolism // Acta Biochim. Pol. 2015. Vol.62, №3. P.499-507. doi: 10.18388/abp.2015_1067

7. Broadhust Е., Wang Y., Crawford M.A., Cunnane S.C., Parkington J.E., Schmidt W.F. Brain-specific lipids from marine, lacustrine, or terrestrial food resources: potential impact on early African Homo sapiens // Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 2002. Vol.131, №4. P.653-673.

8. Cetin I., Alvino G., Cardellicchio M. Long chain fatty acids and dietary fats in fetal nutrition // J. Physiol. 2009. Vol.587 (Pt 14). P.3441-3451. doi: 10.1113/jphysiol.2009.173062

9. Cockshutt A.M., Absolom D.R., Possmayer R. The role of palmitic acid in pulmonary surfactant: enhancement of surface activity and prevention of inhibition by blood proteins // Biochim. Biophys. Acta. 1991. Vol.1085, №2. P.248-256.

10. Dabadie H., Motta C., Peuchant E., LeRuyet P., Mendy F. Variations in daily intakes of myristic acid and α-linolenic acids in sn-2 position modify lipid profile and red blood cell membrane fluidity // Br. J. Nutr. 2006. Vol.96, №2. P.283-289.

11. Demmelmair H., Koletzko B. Importance of fatty acids in the perinatal period // World Rev. Nutr. Diet. 2015. Vol.112. P.31-47.

12. Enke U., Jaudszus A., Schleussner E., Seyfarth L., Jahreis G., Kuhnt K. Fatty acid distribution of cord and maternal blood in human pregnancy: special focus on individual trans fatty acids and conjugated linoleic acids // Lipids Health Dis. 2011. Vol.10. P.247-252.

13. Geliebter A., Torbay N., Braco E.T., Hashim S.A., Van Itallie T.B. Overfeeding with medium-chain triglyceride diet results in diminished deposition of fat // Am. J. Clin. Nurt. 1983. Vol.37. P.1-4.

14. Gonzales L.W., Ballard P.L., Gonzales J. Glucocorticoid and cAMP increase fatty acid synthetase mRNA in human feral lung explants // Biochim. Biophys. Acta. 1994. Vol.1215, №1-2. P.49-58.

15. Haggarty P. Placental regulation of fatty acid delivery and its effect on fetal growth: a review // Placenta. 2002. Vol.23, Suppl. A. P.28-38.

16. Helland I.B., Smith L., Saarem K., Saugstad O.D., Drevon C.A. Maternal supplementation with very-long-chain n-3 fatty acids during pregnancy and lactation augments children’s IQ at 4 years of age // Pediatrics. 2003. Vol.111, №1. P.39-44.

17. Hurley M.S., Flux C., Salter A.M., Brameld J.M. Effect of fatty acids on skeletal muscle cell differentiation in vitro // Br. J. Nutr. 2006. Vol.95, №3. P.623-630.

18. Ikemoto A., Kobayashi T., Watanabe S., Okuyama H. Membrane fatty acids modification of PC12 cells by arachidonate or docosahexaenoate affect neurite outgrowth but not norepinephrine release // Neurochem. Res. 1997. Vol.22, №6. P.671-678.

19. Innis S.M. Fatty acids and early human development // Early Hum. Dev. 2007. Vol.83, №12. P.761-766.

20. Jansson T., Myatt L., Powell T.L. The role of trophoblast nutrient and ion transporters in the development of pregnancy complications and adult disease // Curr. Vasc. Pharmacol. 2009. Vol.7, №4. P.521-533.

21. Jensen C.L. Effects of n-3 fatty acids during pregnancy and lactation // Am. J. Clin. Nutr. 2006. Vol.83, №6(Suppl.). P.1452-1457.

22. Johnsen G.M., Basak S., Weedon-Fekjcer M.S., Staff A.C., Duttaroy A.K. Docosahexaenoic acid stimulates tube formation in first trimester trophoblast cell, HTR8/SVneo // Placenta. 2011. Vol.32. №9. P.626-632.

23. Kessler A., Yehuda S. Learning-induced changes in brain membrane cholesterol and fluidity: implication for brain aging // Int. J. Neirosci. 1985. Vol.28, №1-2. P.73-82.

24. Koletzko B., Agostoni C., Carlson S.E., Clandinin T., Hornstra G., Neuringer M., Uauy R., Yamashiro Y., Willatts P. Long chain polyunsaturated fatty acids (LC-PUFA) and perinatal development // Acta Paediatr. 2001. Vol.90, №4. P.460-464.

25. Lager S., Gaccioli F., Ramirez V.I., Jones H.N., Jansson T., Powell T.L. Oleic acid stimulares system A amino acid transport in primary human trophoblast cells mediated by toll-like receptor 4 // J. Lipid. Res. 2013. Vol.54, №3. P.725-733.

26. Lager S., Jansson T., Powell T.L. Differential regulation of placental amino acid transport by saturated and unsaturated fatty acids // Am. J. Physiol. Cell Physiol. 2014. Vol.307, №8. P.738-744.

27. Legrand P., Catheline D., Rioux V., Durand G. Lauric acid is desaturated to 12:1n-3 by rat liver homogenates // Lipids. 2002. Vol.37, №6. P.569-572.

28. Legrand P., Rioux V. The complex and important cellular and metabolic functions of saturated fatty acids // Lipids. 2010. Vol.45, №10. P.941-946.

29. Makrides M., Smithers L.G., Gibson R.A. Role of long-chain polyunsaturated fatty acids in neurodevelopment and growth // Nestle Nutr. Workshop Ser. Pediatr. Program. 2010. Vol.65. P.133-136.

30. Mallampalli R.K., Salome R.G., Hunninqhake G.W. Lung CTP: choline-phosphate cytidylyltransferase: activation of cytosolic species by unsaturated fatty acid // Am. J. Physiol. 1993. Vol.265(2 Pt1). P.158-163.

31. McCann J.C., Ames B.N. Is docosahexaeboic acid, an ω-3 long-chain polyunsaturated fatty acid required for development of normal brain function? An overview of evidence from cognitive and behavioral tests in humans and animals // Am. J. Clin. Nutr. 2005. Vol.82, №2. P.281-295.

32. Oliveira O.R., Santana M.G., Santos F.S., Conceição F.D., Sardinha F.L., Veiga G.V., Tavares do Carmo M.G. Composition of fatty acids in the maternal and umbilical cord plasma of adolescent and adult mothers: relationship with anthropometric parameters of newborn // Lipids Health Dis. 2012. Vol.11. P.157-164.

33. Paterson C.E., Devis K.S., Beckman D.E., Rhoades R.A. Fatty acid synthesis in the fetal lung: relationship to surfactant lipids // Biochim. Biophys. Acta. 1986. Vol.878, №1. P.110-126.

34. Prescott SL, Barden AE, Mori TA, Dunstan JA. Maternal fish oil supplementation in pregnancy modifies neonatal leukotriene production by cord-blood-derived neutrophils // Clin. Sci. (Lond). 2007. Vol.113, №10. P.409-416.

35. Rioux V., Catheline D., Bouriel, Legrand P. Dietary myristic acid at physiologically relevant levels increases the tissue content of C20:5 n-3 and С20:3 n-6 in the rat // Reprod. Nutr. Dev. 2005. Vol.45, №10. P.599-612.

36. Rooney S.A. Fatty acid biosynthesis in developing fetal lung // Am. J. Physiol. 1989. Vol.257, №4 (Pt 1). P.195-201.

37. SanGiovanni J.P., Chew E.Y. The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina // Prog. Retin. Eye Res. 2005. Vol.24, №1. P.87-138.

38. Smithers L.G., Gibson R.A., McPhee A., Makrides M. Effect of long-chain polyunsaturated supplementation of preterm infant on disease risk and neurodevelopment: a systematic review of randomized controlled trials // Am. J. Clin. Nutr. 2008. Vol.87, №4. P.912-920.

39. Smuts C.M., Huang M., Mundy D., Plasse T., Major S., Carlson S.E. A randomized trial of docosahexaenoic acid supplementation during the third trimester of pregnancy // Obstet. Gynecol. 2003. Vol.101, №3. P.469-479.

40. Szajewska H, Horvath A, Koletzko B. Effect of n-3 long-chain polyunsaturated fatty acid supplementation of women with low-risk pregnancies on pregnancy outcomes and growth measures at birth: a meta-analysis of randomized controlled trials // Am. J. Clin. Nutr. 2006. Vol.83, №6. P.1337-1344.

41. Tachibana S., Sato K., Cho Y., Chiba T., Schneider W.J., Akiba Y. Octanoate reduces very low-density lipoprotein secretion by decreasing the synthesis of apolipoprotein B in primary cultures of chicken hepatocytes // Biochim. Biophys. Acta. 2005. Vol.1737, №1. P.36-43.

42. Vadyanoy V., Bluestone G.L., Lonqmuir K.J. Surface properties of two rabbit lung lamellar body preparations with markedly fatty acids profiles // Biochim. Biophys. Acta. 1990. Vol.1047, №3. P.284-289.

43. Wainwright P.E., Xing H.C., Mutsaers L., McCutcheon D., Kyle D. Arachidonic acid offsets the effects on mouse brain and behavior of a diet with a low (n-6): (n-3) ratio and very high levels of docosahexanoic acid // J. Nutr. 1997. Vol.127, №1. P.184-193.


Review

For citations:


Ishutina N.A. THE ROLE OF FATTY ACIDS IN EMBRYONIC DEVELOPMENT (REVIEW). Bulletin Physiology and Pathology of Respiration. 2018;(69):107-114. (In Russ.) https://doi.org/10.12737/article_5b985a4bcfb950.60653849

Views: 122


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-5029 (Print)