Capsaicin-induced transcriptomic reprogramming of monocyte-derived macrophages during in vitro differentiation
https://doi.org/10.36604/1998-5029-2025-98-94-108
Abstract
Introduction. TRPV1 cation channels are known to be activated by cigarette smoke components, particulate matter, and reactive oxygen species, and their expression is increased in alveolar macrophages of patients with chronic obstructive pulmonary disease (COPD).
Aim. To analyze the features of the transcriptome profile of macrophages differentiating from peripheral blood monocytes in vitro under prolonged exposure to the TRPV1 agonist capsaicin.
Materials and methods. Monocytes were isolated from the peripheral blood of five apparently healthy male volunteers (52.2±3.89 years). The cells were differentiated for 10 days in RPMI-1640 medium (10% FCS, 1% penicillin/streptomycin) containing 50 ng/ml GM-CSF or GM-CSF at the same concentration and 50 μM capsaicin. Upon completion of differentiation, total RNA was extracted from the resulting macrophages, mRNA was enriched, and sequencing was performed on the MGISEQ-200 platform in SE50 mode. Data processing included read mapping (Salmon), differential expression analysis (DESeq2), and functional gene enrichment (Cytoscape). In addition, macrophage phenotype was assessed using the MacSpectrum platform.
Results. Macrophage differentiation in the presence of capsaicin was primarily accompanied by signs of activation of protein translation and transport processes, lipid metabolism, and maintenance of replicative potential. At the same time, suppression of biological processes associated with cytokine signaling, response to pathogens, ability to stimulate leukocyte activation and proliferation, as well as cytoskeletal organization and cell motility was observed. Analysis using MacSpectrum revealed a decrease in the polarization index (MPI) and differentiation index (AMDI) in macrophages differentiated in the presence of capsaicin, indicating inhibition of the development of a mature pro-inflammatory phenotype and the emegrence of a hyporesponsive, M0-like state.
Conclusion. Capsaicin, likely mediating its effect primarily through TRPV1, significantly influences macrophage differentiation, leading to the formation of hyporesponsive, incompletely differentiated cells that share several characteristics with alveolar macrophages found in the airways of COPD patients. These data suggest TRPV1-dependent modulation of macrophages as a possible pathogenetic mechanism contributing to this disease.
About the Authors
D. E. NaumovRussian Federation
Denis E. Naumov, PhD (Med.), Head of Laboratory of Molecular and Translational Research
22 Kalinina Str., Blagoveshchensk, 675000
O. O. Nekrasova
Russian Federation
Olesya O. Nekrasova, PhD (Med.), Senior Staff Scientist, Laboratory of Mechanisms of Virus-Associated Developmental Pathology
22 Kalinina Str., Blagoveshchensk, 675000
D. A. Gassan
Russian Federation
Dina A. Gassan, PhD (Med.), Head of Laboratory of Mechanisms of Virus-Associated Developmental Pathology
22 Kalinina Str., Blagoveshchensk, 675000
I. Yu. Sugaylo
Russian Federation
Ivana Yu. Sugaylo, PhD (Med.), Staff Scientist, Laboratory of Molecular and Translational Research
22 Kalinina Str., Blagoveshchensk, 675000
E. G. Sheludko
Russian Federation
Elizaveta G. Sheludko, PhD (Med.), Staff Scientist, Laboratory of Molecular and Translational Research
22 Kalinina Str., Blagoveshchensk, 675000
References
1. Devulder J.V. Unveiling mechanisms of lung aging in COPD: a promising target for therapeutics development. Chin. Med. J. Pulm. Crit. Care Med. 2024; 2(3):133–141. https://doi.org/10.1016/j.pccm.2024.08.007
2. Kim G.D., Lim E.Y., Shin H.S. Macrophage polarization and functions in pathogenesis of chronic obstructive pulmonary disease. Int. J. Mol. Sci. 2024; 25(11):5631. https://doi.org/10.3390/ijms25115631
3. Wang S., Chen Y., Hong W., Li B., Zhou Y., Ran P. Chronic exposure to biomass ambient particulate matter triggers alveolar macrophage polarization and activation in the rat lung. J. Cell. Mol. Med. 2022; 26(4):1156–1168. https://doi.org/10.1111/jcmm.17169
4. Guo X., Yang S., Zhu H., Liu F., Li K., Li G., Lin Y., Yu H., Qiu W., Xu H., Liu Q., Xie X., Sun Y., Zheng P., Chen B., Liu Z., Yuan X., Peng S., Bi X., Yang J., Shao N.Y., Dai J. Involvement of M2 macrophages polarization in PM2.5-induced COPD by upregulating MMP12 via IL4/STAT6 pathway. Ecotoxicol. Environ. Saf. 2024; 283:116793. https://doi.org/10.1016/j.ecoenv.2024.116793
5. Feng H., Zheng R. Cigarette smoke prevents M1 polarization of alveolar macrophages by suppressing NLRP3. Life Sci. 2023; 327:121854. https://doi.org/10.1016/j.lfs.2023.121854
6. Hu Y., Shao X., Xing L., Li X., Nonis G.M., Koelwyn G.J., Zhang X., Sin D.D. Single-cell sequencing of lung macrophages and monocytes reveals novel therapeutic targets in COPD. Cells 2023; 12(24):2771. https://doi.org/10.3390/cells12242771
7. Baßler K., Fujii W., Kapellos T.S., Dudkin E., Reusch N., Horne A., Reiz B., Luecken M.D., Osei-Sarpong C., Warnat- Herresthal S., Bonaguro L., Schulte-Schrepping J., Wagner A., Günther P., Pizarro C., Schreiber T., Knoll R., Holsten L., Kröger C., De Domenico E., Becker M., Händler K., Wohnhaas C.T., Baumgartner F., Köhler M., Theis H., Kraut M., Wadsworth M.H. 2nd, Hughes T.K., Ferreira H.J., Hinkley E., Kaltheuner I.H., Geyer M., Thiele C., Shalek A.K., Feißt A., Thomas D., Dickten H., Beyer M., Baum P., Yosef N., Aschenbrenner A.C., Ulas T., Hasenauer J., Theis F.J., Skowasch D., Schultze J.L. Alveolar macrophages in early stage COPD show functional deviations with properties of impaired immune activation. Front. Immunol. 2022; 13:917232. https://doi.org/10.3389/fimmu.2022.917232
8. Shaykhiev R., Krause A., Salit J., Strulovici-Barel Y., Harvey B.G., O'Connor T.P., Crystal R.G. Smoking-dependent reprogramming of alveolar macrophage polarization: implication for pathogenesis of chronic obstructive pulmonary disease. J. Immunol. 2009; 183(4):2867–2883. https://doi.org/10.4049/jimmunol.0900473
9. Wang M., Zhang Y., Xu M., Zhang H., Chen Y., Chung K.F., Adcock I.M., Li F. Roles of TRPA1 and TRPV1 in cigarette smoke-induced airway epithelial cell injury model. Free Radic. Biol. Med. 2019; 134:229–238. https://doi.org/10.1016/j.freeradbiomed.2019.01.004
10. Agopyan N., Bhatti T., Yu S., Simon S.A. Vanilloid receptor activation by 2- and 10-microm particles induces responses leading to apoptosis in human airway epithelial cells. Toxicol. Appl. Pharmacol. 2003; 192(1):21–35. https://doi.org/10.1016/S0041-008X(03)00259-X
11. Chu Y., Zhang H., Yang M., Yu R. Molecular dynamic simulations reveal the activation mechanisms of oxidationinduced TRPV1. Int. J. Mol. Sci. 2023; 24(11):9553. https://doi.org/10.3390/ijms24119553
12. Baxter M., Eltom S., Dekkak B., Yew-Booth L., Dubuis E.D., Maher S.A., Belvisi M.G., Birrell M.A. Role of transient receptor potential and pannexin channels in cigarette smoke-triggered ATP release in the lung. Thorax 2014; 69(12):1080–1089. https://doi.org/10.1136/thoraxjnl-2014-205467
13. Naumov D.E., Sugaylo I.Yu., Kotova O.O., Gassan D.A., Gorchakova Ya.G., Maltseva T.A. [Comparative characteristics of TRP channels expression levels on the macrophages of patients with chronic obstructive pulmonary disease]. Bûlleten' fiziologii i patologii dyhaniâ = Bulletin Physiology and Pathology of Respiration 2022; 85:37–46 (in Russian). https://doi.org/10.36604/1998-5029-2022-85-37-46
14. Li Y., Guo X., Zhan P., Huang S., Chen J., Zhou Y., Jiang W., Chen L., Lin Z. TRPV1 regulates proinflammatory properties of M1 macrophages in periodontitis via NRF2. Inflammation 2024; 47(6):2041–2056. https://doi.org/10.1007/s10753-024-02024-3
15. Vašek D., Fikarová N., Marková V.N., Honc O., Pacáková L., Porubská B., Somova V., Novotný J., Melkes B., Krulová M. Lipopolysaccharide pretreatment increases the sensitivity of the TRPV1 channel and promotes an anti-inflammatory phenotype of capsaicin-activated macrophages. J. Inflamm. (Lond.) 2024; 21(1):17. https://doi.org/10.1186/s12950-024-00391-0
16. Li J., Wang H., Zhang L., An N., Ni W., Gao Q., Yu Y. Capsaicin affects macrophage anti-inflammatory activity via the MAPK and NF-κB signaling pathways. Int. J. Vitam. Nutr. Res. 2023; 93(4):289–297. https://doi.org/10.1024/0300-9831/a000721
17. Tang J., Luo K., Li Y., Chen Q., Tang D., Wang D., Xiao J. Capsaicin attenuates LPS-induced inflammatory cytokine production by upregulation of LXRα. Int. Immunopharmacol. 2015; 28(1):264–269. https://doi.org/10.1016/j.intimp.2015.06.007
18. Naumov D.E., Gassan D.A., Kotova O.O., Sheludko E.G., Gorchakova Y.G., Sugaylo I.Yu., Maltseva T.A. [Effect of capsaicin on monocyte differentiation in patients with chronic obstructive pulmonary disease]. Bûlleten' fiziologii i patologii dyhaniâ = Bulletin Physiology and Pathology of Respiration 2024; 93:25–37 (in Russian). https://doi.org/10.36604/1998-5029-2024-93-25-37
19. Li C., Menoret A., Farragher C., Ouyang Z., Bonin C., Holvoet P., Vella A.T., Zhou B. Single cell transcriptomics based-MacSpectrum reveals novel macrophage activation signatures in diseases. JCI Insight 2019; 5(10):e126453. https://doi.org/10.1172/jci.insight.126453
20. Liang T., Chen J., Xu G., Zhang Z., Xue J., Zeng H., Jiang J., Chen T., Qin Z., Li H., Ye Z., Nie Y., Liu C., Zhan X. STAT1 and CXCL10 involve in M1 macrophage polarization that may affect osteolysis and bone remodeling in extrapulmonary tuberculosis. Gene 2022; 809:146040. https://doi.org/10.1016/j.gene.2021.146040
21. Wu X., Wang Z., Shi J., Yu X., Li C., Liu J., Zhang F., Chen H., Zheng W. Macrophage polarization toward M1 phenotype through NF-κB signaling in patients with Behçet's disease. Arthritis Res. Ther. 2022; 24(1):249. https://doi.org/10.1186/s13075-022-02938-z
22. Liao X., Sharma N., Kapadia F., Zhou G., Lu Y., Hong H., Paruchuri K., Mahabeleshwar G.H., Dalmas E., Venteclef N., Flask C.A., Kim J., Doreian B.W., Lu K.Q., Kaestner K.H., Hamik A., Clément K., Jain M.K. Krüppel-like factor 4 regulates macrophage polarization. J. Clin. Invest. 2011; 121(7):2736–2749. https://doi.org/10.1172/JCI45444
23. Wang J., Wu Z., Huang Y., Jin L., Xu J., Yao Z., Ouyang X., Zhou Z., Mao S., Cao J., Lai B., Shen W. IRF4 induces M1 macrophage polarization and aggravates ulcerative colitis progression by the Bcl6-dependent STAT3 pathway. Environ. Toxicol. 2024; 39(4):2390–2404. https://doi.org/10.1002/tox.24106
24. Zhu S., Feng X., Yuan J., Sun C., Ding H., Wang Y., Chen K., Cui E., Zhang L., Bao N. AP-1-dependent c-Fos activation by TREX1 drives M2 macrophage polarization and mitigates osteoarthritis progression. Cell. Mol. Life Sci. 2025; 82(1):253. https://doi.org/10.1007/s00018-025-05771-0
25. Zhang W., Wang X., Xia X., Liu X., Suo S., Guo J., Li M., Cao W., Cai Z., Hui Z., Subramaniam M., Spelsberg T.C., Wang J., Wang L. Klf10 inhibits IL-12p40 production in macrophage colony-stimulating factor-induced mouse bone marrow-derived macrophages. Eur. J. Immunol. 2013; 43(1):258–269. https://doi.org/10.1002/eji.201242697
26. Christopoulou M.E., Papakonstantinou E., Stolz D. Matrix metalloproteinases in chronic obstructive pulmonary disease. Int. J. Mol. Sci. 2023; 24(4):3786. https://doi.org/10.3390/ijms24043786
27. Akata K., Yamasaki K., Leitao Filho F.S., Yang C.X., Takiguchi H., Sahin B., Whalen B.A., Yang C.W.T., Leung J.M., Sin D.D., van Eeden S.F. Abundance of non-polarized lung macrophages with poor phagocytic function in chronic obstructive pulmonary disease (COPD). Biomedicines 2020; 8(10):398. https://doi.org/10.3390/biomedicines8100398
28. Zhang Z., Yu H., Wang Q., Ding Y., Wang Z., Zhao S., Bian T. A macrophage-related gene signature for identifying COPD based on bioinformatics and ex vivo experiments. J. Inflamm. Res. 2023; 16:5647–5665. https://doi.org/10.2147/JIR.S438308
29. Shen W., Wang S., Wang R., Zhang Y., Tian H., Yang X., Wei W. Analysis of the polarization states of the alveolar macrophages in chronic obstructive pulmonary disease samples based on miRNA-mRNA network signatures. Ann. Transl. Med. 2021; 9(16):1333. https://doi.org/10.21037/atm-21-3815
30. Wang S., Zhong M., Deng X., Liu C., Tan Y., Qian B., Zhong M. Based exploration of the diagnostic value of oxidative stress-related key genes in chronic obstructive pulmonary disease. Cell Biol. Toxicol. 2025; 41(1):69. https://doi.org/10.1007/s10565-025-10019-5
31. Hsieh M.H., Chen P.C., Hsu H.Y., Liu J.C., Ho Y.S., Lin Y.J., Kuo C.W., Kuo W.S., Kao H.F., Wang S.D., Liu Z.G., Wu L.S., Wang J.Y. Surfactant protein D inhibits lipid-laden foamy macrophages and lung inflammation in chronic obstructive pulmonary disease. Cell. Mol. Immunol. 2023; 20(1):38–50. https://doi.org/10.1038/s41423-022-00946-2
32. Han L., Wang J., Ji X.B., Wang Z.Y., Wang Y., Zhang L.Y., Li H.P., Zhang Z.M., Li Q.Y. Transcriptomics analysis identifies the presence of upregulated ribosomal housekeeping genes in the alveolar macrophages of patients with smoking- induced chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2021; 16:2653–2664. https://doi.org/10.2147/COPD.S313252
33. Tomita K., Caramori G., Ito K., Lim S., Sano H., Tohda Y., Adcock I.M., Barnes P.J. Telomere shortening in alveolar macrophages of smokers and COPD patients. Open Pathol. J. 2010; 4:23–29. https://doi.org/10.2174/1874375701004010023
34. Ito S., Horikawa S., Suzuki T., Kawauchi H., Tanaka Y., Suzuki T., Suzuki T. Human NAT10 is an ATP-dependent RNA acetyltransferase responsible for N4-acetylcytidine formation in 18 S ribosomal RNA (rRNA). J. Biol. Chem. 2014; 289(52):35724–30. https://doi.org/10.1074/jbc.C114.602698
35. McMahon M., Ayllón V., Panov K.I., O'Connor R. Ribosomal 18 S RNA processing by the IGF-I-responsive WDR3 protein is integrated with p53 function in cancer cell proliferation. J. Biol. Chem. 2010; 285(24):18309–18318. https://doi.org/10.1074/jbc.M110.108555
36. Song J., Peng C., Wang R., Hua Y., Wu Q., Deng L., Cao Y., Zhang L., Hou L. Ribosome biogenesis regulator 1 homolog (RRS1) promotes cisplatin resistance by regulating AEG-1 abundance in breast cancer cells. Molecules 2023; 28(7):2939. https://doi.org/10.3390/molecules28072939
37. Zhang H., Wu Z., Lu J.Y., Huang B., Zhou H., Xie W., Wang J., Shen X. DEAD-Box helicase 18 counteracts PRC2 to safeguard ribosomal DNA in pluripotency regulation. Cell Rep. 2020; 30(1):81–97.e7. https://doi.org/10.1016/j.celrep.2019.12.021
38. Mayeda A., Krainer A.R. Regulation of alternative pre-mRNA splicing by hnRNP A1 and splicing factor SF2. Cell 1992; 68(2):365–375. https://doi.org/10.1016/0092-8674(92)90477-T
39. Basta J., Rauchman M. The nucleosome remodeling and deacetylase complex in development and disease. Transl. Res. 2015; 165(1):36–47. https://doi.org/10.1016/j.trsl.2014.05.003
40. Yang J., Wang Y., Yang D., Ma J., Wu S., Cai Q., Xue J., Yuan C., Wang J., Liu X. Wnt/β-catenin signaling regulates lipopolysaccharide-altered polarizations of RAW264.7 cells and alveolar macrophages in mouse lungs. Eur. J. Inflamm. 2021; 19:205873922110593. https://doi.org/10.1177/20587392211059362
41. Somma D., Kok F.O., Kerrigan D., Wells C.A., Carmody R.J. Defining the role of nuclear factor (NF)-κB p105 subunit in human macrophage by transcriptomic analysis of NFKB1 knockout THP1 cells. Front. Immunol. 2021; 12:669906. https://doi.org/10.3389/fimmu.2021.669906
42. Selig M., Poehlman L., Lang N.C., Völker M., Rolauffs B., Hart M.L. Prediction of six macrophage phenotypes and their IL-10 content based on single-cell morphology using artificial intelligence. Front. Immunol. 2024; 14:1336393. https://doi.org/10.3389/fimmu.2023.1336393
43. Mukhopadhyay S., Heinz E., Porreca I., Alasoo K., Yeung A., Yang H.T., Schwerd T., Forbester J.L., Hale C., Agu C.A., Choi Y.H., Rodrigues J., Capitani M., Jostins-Dean L., Thomas D.C., Travis S., Gaffney D., Skarnes W.C., Thomson N., Uhlig H.H., Dougan G., Powrie F. Loss of IL-10 signaling in macrophages limits bacterial killing driven by prostaglandin E2. J. Exp. Med. 2020; 217(2):e20180649. https://doi.org/10.1084/jem.20180649
44. Takanashi S., Hasegawa Y., Kanehira Y., Yamamoto K., Fujimoto K., Satoh K., Okamura K. Interleukin-10 level in sputum is reduced in bronchial asthma, COPD and in smokers. Eur. Respir. J. 1999; 14(2):309–314. https://doi.org/10.1034/j.1399-3003.1999.14b12.x
45. Foronjy R., Nkyimbeng T., Wallace A., Thankachen J., Okada Y., Lemaitre V., D'Armiento J. Transgenic expression of matrix metalloproteinase-9 causes adult-onset emphysema in mice associated with the loss of alveolar elastin. Am. J. Physiol. Lung Cell. Mol. Physiol. 2008; 294(6):L1149–L1157. https://doi.org/10.1152/ajplung.00481.2007
46. Fujii W., Kapellos T.S., Baßler K., Händler K., Holsten L., Knoll R., Warnat-Herresthal S., Oestreich M., Hinkley E.R., Hasenauer J., Pizarro C., Thiele C., Aschenbrenner A.C., Ulas T., Skowasch D., Schultze J.L. Alveolar macrophage transcriptomic profiling in COPD shows major lipid metabolism changes. ERJ Open Res. 2021; 7(3):00915-2020. https://doi.org/10.1183/23120541.00915-2020
47. Henrot P., Prevel R., Berger P., Dupin I. Chemokines in COPD: from implication to therapeutic use. Int. J. Mol. Sci. 2019; 20(11):2785. https://doi.org/10.3390/ijms20112785
48. Naumov D.E., Kotova O.O., Gassan D.A., Sugaylo I.Yu., Sheludko E.G., Gorchakova Y.G. [Transcriptome analysis of peripheral blood monocytes in chronic obstructive pulmonary disease patients]. Bûlleten' fiziologii i patologii dyhaniâ = Bulletin Physiology and Pathology of Respiration 2023; 90:47–58 (in Russian). https://doi.org/10.36604/1998-5029-2023-90-47-58
49. Liao S.X., Ding T., Rao X.M., Sun D.S., Sun P.P., Wang Y.J., Fu D.D., Liu X.L., Ou-Yang Y. Cigarette smoke affects dendritic cell maturation in the small airways of patients with chronic obstructive pulmonary disease. Mol. Med. Rep. 2015; 11(1):219–225. https://doi.org/10.3892/mmr.2014.2759
50. Gao M., Shi J., Xiao X., Yao Y., Chen X., Wang B., Zhang J. PD-1 regulation in immune homeostasis and immunotherapy. Cancer Lett. 2024; 588:216726. https://doi.org/10.1016/j.canlet.2024.216726
51. Fan T.W., Higashi R.M., Song H., Daneshmandi S., Mahan A.L., Purdom M.S., Bocklage T.J., Pittman T.A., He D., Wang C., Lane A.N. Innate immune activation by checkpoint inhibition in human patient-derived lung cancer tissues. Elife 2021; 10:e69578. https://doi.org/10.7554/eLife.69578
52. Juárez-Contreras R., Mota-Carrillo E., Piedra-Ramírez A., Farías-Sánchez D., González-Ramírez R., Morales-Lázaro S.L. Capsaicin: beyond TRPV1. Front. Nutr. 2025; 12:1594742. https://doi.org/10.3389/fnut.2025.1594742
Review
For citations:
Naumov D.E., Nekrasova O.O., Gassan D.A., Sugaylo I.Yu., Sheludko E.G. Capsaicin-induced transcriptomic reprogramming of monocyte-derived macrophages during in vitro differentiation. Bulletin Physiology and Pathology of Respiration. 2025;(98):94-108. (In Russ.) https://doi.org/10.36604/1998-5029-2025-98-94-108






















