Regulation by thiol disulfide and antioxidant systems of oxidative stress induced by atmospheric suspended particles
https://doi.org/10.36604/1998-5029-2019-73-112-124
Abstract
The review is devoted to the role of thioredoxin and glutathione antioxidant systems in protection of the body against oxidative stress caused by exposure to micro-sized solid suspended particles of atmospheric air. The features of components and parameters of solid suspended particles determining their oxidative properties have been described. The focus is on intracellular and molecular mechanisms affecting many antioxidant reactions. The issues of regulation, modulation and maintenance of cellular redox homeostasis by key reducing thiols have been considered.
About the Authors
L. S. BarskovaRussian Federation
Lyudmila S. Barskova - Junior Staff Scientist, Laboratory of Medical Ecology and Recreational Resources.
73g Russkaya Str., Vladivostok, 690105
T. I. Vitkina
Russian Federation
Tatyana I. Vitkina - PhD, D.Sc. (Biol.), Professor RAS, Head of Laboratory of Medical Ecology and Recreational Resources.
73g Russkaya Str., Vladivostok, 690105
References
1. Strickland M.J., Hao H., Hu X., Chang H.H., Darrow L.A., Liu Y. Pediatric emergency visits and short-term changes in PM2.5 concentrations in the U.S. state of Georgia. Environ. Health Perspect. 2016; 124(5):690-696. doi: 10.1289/ehp.1509856
2. Vitkina T.I., Yankova V.I., Gvozdenko T.A., Denisenko Y.K., Golokhvast K.S. The formation of oxidative disorders in the population of Vladivostok under the influence of atmospheric microparticles. Byulleten ’ Vostochno-Sibirskogo nauchnogo tsentra Sibirskogo Otdeleniya RossiyskoyAkademii meditsinskikh nauk 2016; 1(3-2):82-85 (in Russian). doi: 10.12737/article_590823a47defa8.34126398
3. Styszko K., Samek L., Szramowiat K., Korzeniewska A., Kubisty K., Rakoczy-Lelek R., Kistler M., Giebl A. K. Oxidative potential of PM10 and PM2.5 collected at high air pollution site related to chemical composition: Krakow case study. Air Qual. Atmos. Health 2017; 9(10):1-15. doi: 10.1007/s11869-017-0499-3
4. Vitkina T.I., Yankova V.I., Gorodnyy VA. Dynamics of the level of lipid hydroperoxides in alveolar macrophages under exposure to model suspensions of a micro-sized atmospheric solid particles. Bioradikaly i antioksidanty 2016; 3(3):22-23 (in Russian).
5. Thurston G.D., Burnett R.T., Turner M.C., Shi Y., Krewski D., Lall R., Ito K., Jerrett M., Gapstur S.M., Diver W.R., Pope C.A. Ischemic heart disease mortality and long-term exposure to source-related components of U.S. fine particle air pollution. Environ. Health Perspect. 2016; 124(6):785-794. doi: 10.1289/ehp.1509777
6. Kalinina E.V., Chernov N.N., Novichkova M.D. The role of glutathione, glutathione transferase and glutaredoxin in the regulation of redox-dependent processes. Uspekhi biologicheskoy khimii 2014; 54:299-384 (in Russian).
7. Totlandsdal A.I., Ovrevik J., Cochran R.E., Herseth J.I., Bolling A.K., Lag M., Schwarze P., Lilleaas E., Holme J.A., Kubatova A. The occurrence of polycyclic aromatic hydrocarbons and their derivatives and the proinflammatory potential of fractionated extracts of diesel exhaust and wood smoke particles. J. Environ. Sci. Health. A Tox. Hazard Subst. Environ. Eng. 2014; 49(4):383-396. doi: 10.1080/10934529.2014.854586
8. Yankova V.I., Vitkina T.I., Zyumchenko N.E., Barskova L.S., Golokhvast K.S. The impact of model suspensions of micro-sized suspended particulate matter of atmospheric air on morphological and functional characteristics and parameters of lipid peroxidation of alveolar macrophages of Vistar's line rats. Zdorov’ye. Meditsinskaya ekologiya. Nauka 2017; (4):80-86 (in Russian). doi:10.5281/zenodo.835330
9. Vitkina T.I., Yankova VI., Gvozdenko T.A., Kuznetsov VL., Krasnikov D.V., Nazarenko A.V, Chaika V V, Smagin S.V., Tsatsakis A.M., Engin A.B., Karakitsios S.P., Sarigiannis D.A., Golokhvast K.S. The impact of multi-walled carbon nanotubes with different amount of metallic impurities on immunometabolic parameters in healthy volunteers. Food Chem. Toxicol. 2016; 87:138-147. doi:10.1016/j.fct.2015.11.023
10. Atkinson R.W., Kang S., Anderson H.R., Mills I.C., Walton H.A. Epidemiological time series studies of PM2.5 and daily mortality and hospital admissions: a systematic review and meta-analysis. Thorax 2014; 69(7):660-665. doi: 10.1136/thoraxjnl-2013-204492
11. Weichenthal S., Hoppin J.A., Reeves F. Obesity and the cardiovascular health effects of fine particulate air pollution. Obesity 2014; 22(7):1580-1589. doi: 10.1002/oby.20748
12. Bhatia M., McGrath K. L., Di Trapani G., Charoentong P., Shah F., King M. M., Clarke F.M., Tonissen K. F. The thioredoxin system in breast cancer cell invasion and migration. Redox Biol. 2016; 8:68-78. doi: 10.1016/j.redox.2015.12.004
13. Weichenthal S.A., Lavigne E., Evans G.J., Godri Pollitt K.J., Burnett R.T. Fine particulate matter and emergency room visits for respiratory illness. Effect modification by oxidative potential. Am. J. Respir. Crit. Care Med. 2016; 194(5):577-86. doi: 10.1164/rccm.201512-2434OC
14. Bwititi P.T., Chinkwo K. Oxidative stress markers in infectious respiratory diseases: current clinical practice. Int. J. Res. Med. Sci. 2016; 4(6):1802-1813. doi: http://dx.doi.org/10.18203/2320-6012.ijrms20161727
15. World Health Organization. 9 out of 10 people worldwide breathe polluted air, but more countries are taking action. 2018. Available аt: http://www.who.int/news-room/detail/02-05-2018-9-out-of-10-people-worldwide-breathe-polluted-air-but-more-countries-are-taking-action
16. Carmona J.J., Sofer T., Hutchinson J., Cantone L., Coull B., Maity A., Vokonas P., Lin X., Schwartz J., Baccarelli A.A. Short-term airborne particulate matter exposure alters the epigenetic landscape of human genes associated with the mitogen-activated protein kinase network: a cross-sectional study. Environ. Health 2014; 13:94. doi: 10.1186/1476-069X-13-94
17. Wu C., Jain M.R., Li Q., Oka S., Li W., Kong A.N., Nagarajan N., Sadoshima J., Simmons W.J., Li H. Identification of Novel Nuclear Targets of Human Thioredoxin 1. Mol. Cell. Proteomics 2014; 13(12):3507-3518. doi: 10.1074/mcp.M114.04093152
18. Cesaroni G., Forastiere F., Stafoggia M., Andersen Z.J., Badaloni C., Beelen R., Caracciolo B., de Faire U., Erbel R., Eriksen K.T., Fratiglioni L., Galassi C., Hampel R., Heier M., Hennig F., Hilding A., Hoffmann B., Houthuijs D., Jockel K.H., Korek M., Lanki T., Leander K., Magnusson P.K., Migliore E., Ostenson C.G., Overvad K., Pedersen N.L., J J.P., Penell J., Pershagen G., Pyko A., Raaschou-Nielsen O., Ranzi A., Ricceri F., Sacerdote C., Salomaa V., Swart W., Turunen A.W., Vineis P., Weinmayr G., Wolf K., de Hoogh K., Hoek G., Brunekreef B., Peters A. Long term exposure to ambient air pollution and incidence of acute coronary events: Prospective cohort study and meta-analysis in 11 European cohorts from the ESCAPE Project. BMJ 2014; 348:f7412. doi: 10.1136/bmj.f7412
19. Wyzga R.E., Rohr A.C. Long-term particulate matter exposure: attributing health effects to individual PM components. J. Air Waste Manag. Assoc. 2015; 65(5):523-43. doi: 10.1080/10962247.2015.1020396
20. Cheng H., Saffari A., Sioutas C., Forman H.J., Morgan T.E., Finch C.E.Nanoscale particulate matter from urban traffic rapidly induces oxidative stress and inflammation in olfactory epithelium with concomitant effects on brain. Environ. Health Perspect. 2016; 124(10):1537-1546. doi:10.1289/ehp134
21. Yang A., Wang M., Eeftens M., Beelen R., Dons E., Leseman D.L., Brunekreef B., Cassee F.R., Janssen N.A., Hoek G. Spatial variations and land use regression modeling of the oxidative potential of fine particles. Environ. Health Perspect. 2015; 123(11):1187-1192. doi: 10.1289/ehp.1408916
22. Couto N., Wood J., Barber J. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic. Biol. Med. 2016; 95:27-42. doi:10.1016/j.freeradbiomed.2016.02.028
23. Ye Z.W., Zhang J., Townsend D.M., Tew K.D. Oxidative stress, redox regulation and diseases of cellular differentiation. Biochim. Biophys. Acta 2015; 1850(8):1607-1621. doi: 10.1016/j.bbagen.2014.11.010
24. Delfino R.J., Wu J., Tjoa T., Gullesserian S.K., Nickerson B., Gillen D.L. Asthma morbidity and ambient air pollution: effect modification by residential traffic-related air pollution. Epidemiology 2014; 25(1):48-57. doi: 10.1097/EDE.0000000000000016
25. Zheng X.Y., Ding H., Jiang L.N., Chen S.W., Zheng J.P., Qiu M., Zhou Y.X., Chen Q., Guan W.J. Association between air pollutants and asthma emergency room visits and hospital admissions in time series studies: a systematic review and meta-analysis. PLoS One 2015; 10(9):e0138146. doi: 10.1371/journal.pone.0138146
26. Dominko K., Bikic D. Glutathionylation: a regulatory role of glutathione in physiological processes. Arh. Hig Rada Toksikol. 2018; 69(1):1-24. doi: 10.2478/aiht-2018-69-2966
27. Zinellu E., Zinellu A., Giuseppe F.A., Carru C., Pinna P. Circulating biomarkers of oxidative stress in chronic obstructive pulmonary disease: a systematic review. Resp. Res. 2016; 17(1): 150. doi: 10.1186/s12931-016-0471-z
28. Doyle K. Pollution particles damage blood vessels, may lead to heart disease. Reuters: New York, 2016. Available at: https://www.reuters.com/article/us-health-cardiovascular-pm2-5-pollution/pollution-particles-damage-blood-vessels-may-lead-to-heart-disease-idUSKCN12Q2LM
29. Øvrevik J., Refsnes M., Lag M., Holme J.A., Schwarze P.E. Activation of proinflammatory responses in cells of the airway mucosa by particulate matter: oxidant- and non-oxidant-mediated triggering mechanisms. Biomolecules 2015; 5(3):1399-1440. doi: 10.3390/biom5031399
30. Du Y., Xu X., Chu M., Guo Y, Wang J. Air particulate matter and cardiovascular disease: The epidemiological, biomedical and clinical evidence. J. Thorac. Dis. 2016; 8(1):Е8-Е19. doi:10.3978/j.issn.2072-1439.2015.11.37
31. Espinosa-Diez C., Miguel V, Mennerich D., Kietzmann T., Sanchez-Perez P., Cadenas S., Lamas S Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol. 2015; 6:183-197. doi:10.1016/j.redox.2015.07.008
32. Fang T., Zeng L., Gao D., Verma V, Stefaniak A.B., Weber R.J. Ambient size distributions and lung deposition of aerosol dithiothreitol-measured oxidative potential: contrast between soluble and insoluble particles. Environ. Sci. Technol. 2017; 51(12):6802-6811. doi: 10.1021/acs.est.7b01536
33. Fatani S.H. Biomarkers of oxidative stress in acute and chronic bronchial asthma. J. Asthma 2014; 51(6):578-584. doi: 10.3109/02770903.2014.892965
34. GBD 2015 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388(10053):1659-1724. doi: 10.1016/S0140-6736(16)31679-8
35. Golokhvast K.S., Vitkina T.I., Gvozdenko T.A., Kolosov V.P., Yankova VI., Kondratieva E.V., Gorkavaya A., Nazarenko A., Chaika V, Romanova T., Karabtsov A., Perelman Ju., Kiku P., Tsatsakis A. Impact of atmospheric microparticles on the development of oxidative stress in healthy city/industrial seaport residents. Oxid. Med. Cell. Longev. 2015; 2015:412173. doi:10.1155/2015/412173
36. Hansel N.N., Paulin L.M., Gassett A.J., Peng R.D., Alexis N., Fan V.S., Bleecker E., Bowler R., Comellas A.P., Dransfield M., Han M.K, Kim V, Krishnan J.A., Pirozzi C., Cooper C.B., Martinez F., Woodruff P. G., Breysse P.J., Barr R.G., Kaufman J.D. Design of the subpopulations and intermediate outcome measures in COPD (SPIROMICS) AIR Study. BMJ Open Resp. Res. 2017; 4(1):e000186. doi:10.1136/bmjresp-2017-000186
37. Hamad S.H., Schauer J.J., Antkiewicz D.S., Shafer M.M., Kadhim A.Kh. ROS production and gene expression in alveolar macrophages exposed to PM2.5 from Baghdad, Iraq: Seasonal trends and impact of chemical composition. Sci. Tot. Environ. 2016; 543(Pt A):739-745. doi: 10.1016/j.scitotenv.2015.11.065
38. Helmholtz Zentrum Munchen-German Research Center for Environmental Health. Particulate air pollution leads to increased heart attack risk. Science Daily: Rockville, USA; 2014. Available at: http: //www.sciencedaily.com/releases/2014/01/140122091617.htm.
39. Janssen N.A.H., Yang A., Strak M., Steenhof M., Hellack B., Gerlofs-Nijland M.E., Kuhlbusch T., Kelly F., Harrison R., Brunekreef B., Hoek G., Cassee F. Oxidative potential of particulate matter collected at sites with different source characteristics. Sci. Total Environ. 2014; 472:572-581. doi: 10.1016/j.scitotenv.2013.11.099
40. Jean-Jacques S., Simon D., Ferdinand S., Michael R. Oxidative potential of particles in different occupational environments: a pilot study. Ann. Occup. Hyg. 2015; 59(7):882-894. doi: 10.1093/annhyg/mev024
41. Krall J.R., Mulholland J.A., Russell A.G., Balachandran S., Winquist A., Tolbert P. E., Waller L.A., Sarnat S.E. Associations between source-specific fine particulate matter and emergency department visits for respiratory disease in four U.S. Cities. Environ. Health Perspect. 2017; 125(1):97-103. doi: 10.1289/EHP271
42. Larcombe A.N., Phan J.A., Kicic A., Perks K.L., Mead-Hunter R., Mullins B.J. Route of exposure alters inflammation and lung function responses to diesel exhaust. Inhal. Toxicol. 2014; 26(7):409-418. doi: 10.3109/08958378.2014.909910
43. Leveillard T., Ai't-Ali N. Cell signaling with extracellular thioredoxin and thioredoxinlike proteins: insight into their mechanisms of action. Oxid. Med. Cell. Longev. 2017; 2017: ID 8475125. doi: 10.1155/2017/8475125
44. Lu J., Holmgren A. The thioredoxin antioxidant system. Free Radic. Biol. Med. 2014; 66:75-87. doi: 10.1016/j.freeradbiomed.2013.07.036
45. Lu S.Y., Li Y.X., Zhang J.Q., Zhang T., Liu G.H., Huang M.Z., Li X., Ruan J.J., Kannan K., Qiu R.L. Associations between polycyclic aromatic hydrocarbon (PAH) exposure and oxidative stress in people living near e-waste recycling facilities in China. Environ. Int. 2016; 94:161-169. doi: 10.1016/j.envint.2016.05.021
46. Matsuzawa A. Thioredoxin and redox signaling: Roles of the thioredoxin system in control of cell fate. Arch. Bio-chem. Biophys. 2017; 617:101-105. doi: 10.1016/j.abb.2016.09.011
47. Moreno T., Kelly F. J., Dunster C., Oliete A., Martins V, Reche C., Minguillon M.C., Amato F., Capdevila M., Miguel E., Querol X. Oxidative potential of subway PM2.5. Atmos. Environ 2017; 148:230-238. doi: 10.1016/j.atmo-senv.2016.10.045
48. National PEP Weighing Laboratory, US-EPA, Region 4. PM2.5. Objectives and History. Available at: https://ar-chive. epa.gov/pesticides/region4/sesd/pm25/web/html/p2.html
49. Netto L.E.S., Antunes F. The roles of peroxiredoxin and thioredoxin in hydrogen peroxide sensing and in signal transduction. Mol. Cells 2016; 39(1):65-71. doi: 10.14348/molcells.2016.2349
50. Palde P.B., Carroll K.S. A universal entropy-driven mechanism for thioredoxin-target recognition. Proc. Natl. A cad. Sci USA 2015; 112(26):7960-7965. doi: m.m73/pnas.1504376112
51. Pardo M., Porat Z., Rudich A., Schauer J.J., Rudich Y. Repeated exposures to roadside particulate matter extracts suppresses pulmonary defense mechanisms, resulting in lipid and protein oxidative damage. Environ. Pollut. 2015; 210:227-237. doi: 10.1016/j.envpol.2015.12.009
52. Paulin L., Hansel N. Particulate air pollution and impaired lung function. F1000Res. 2016; 5: F1000 Faculty Rev-201. doi: 10.12688/f1000research.7108.1
53. Robinson D.L. Composition and oxidative potential of PM2.5 pollution and health. J. Thorac. Dis. 2017; 9(3):444-447. doi:10.21037/jtd.2017.03.92
54. Schmidt H.H., Stocker R., Vollbracht C., Paulsen G., Riley D., Daiber A., Cuadrado A. Antioxidants in translational medicine. Antioxid. Redox Signal. 2015; 23(14): 1130-1143. doi: 10.1089/ars.2015.6393
55. Boukhenouna S., Wilson M.A, Bahmed K., Kosmider B. Reactive oxygen species in chronic obstructive pulmonary disease. Oxid. Med. Cell. Longev. 2018; 2018: ID 5730395. doi: 10.1155/2018/5730395
56. Schulze F., Gao X., Virzonis D., Damiati S., Schneider M.R., Kodzius R. Air quality effects on human health and approaches for its assessment through microfluidic chips. Genes (Basel) 2017; 8(10):Е244. doi: 10.3390/genes8100244
57. Shang Y, Zhang L., Jiang Y, Li Y, Lu P. Airborne quinones induce cytotoxicity and DNA damage in human lung epithelial A549 cells: the role of reactive oxygen species. Chemosphere 2014; 100:42-49. doi: 10.1016/j.chemo-sphere.2013.12.079
58. Strickland M.J., Hao H., Hu X., Chang H.H., Darrow L.A., Liu Y. Pediatric emergency visits and short-term changes in PM2.5 concentrations in the U.S. state of Georgia. Environ. Health Perspect. 2016; 124(5):690-696. doi: 10.1289/ehp.1509856
59. Styszko K., Samek L., Szramowiat K., Korzeniewska A., Kubisty K., Rakoczy-Lelek R., Kistler M., Giebl A. K. Oxidative potential of PM10 and PM2.5 collected at high air pollution site related to chemical composition: Krakow case study. Air Qual. Atmos. Health 2017; 9(10):1-15. doi: 10.1007/s11869-017-0499-3
60. Thurston G.D., Burnett R.T., Turner M.C., Shi Y., Krewski D., Lall R., Ito K., Jerrett M., Gapstur S.M., Diver W.R., Pope C.A. Ischemic heart disease mortality and long-term exposure to source-related components of U.S. fine particle air pollution. Environ. Health Perspect. 2016; 124(6):785-794. doi: 10.1289/ehp.1509777
61. Totlandsdal A.I., Ovrevik J., Cochran R.E., Herseth J.I., Bolling A.K., Lag M., Schwarze P., Lilleaas E., Holme J.A., Kubatova A. The occurrence of polycyclic aromatic hydrocarbons and their derivatives and the proinflammatory potential of fractionated extracts of diesel exhaust and wood smoke particles. J. Environ. Sci. Health. A Tox. Hazard Subst. Environ. Eng. 2014; 49(4):383-396. doi: 10.1080/10934529.2014.854586
62. Vitkina T.I., Yankova VI., Gvozdenko T.A., Kuznetsov VL., Krasnikov D.V., Nazarenko A.V, Chaika V V, Smagin S.V., Tsatsakis A.M., Engin A.B., Karakitsios S.P., Sarigiannis D.A., Golokhvast K.S. The impact of multi-walled carbon nanotubes with different amount of metallic impurities on immunometabolic parameters in healthy volunteers. Food Chem. Toxicol. 2016; 87:138-147. doi:10.1016/j.fct.2015.11.023
63. Weichenthal S., Hoppin J.A., Reeves F. Obesity and the cardiovascular health effects of fine particulate air pollution. Obesity 2014; 22(7):1580-1589. doi: 10.1002/oby.20748
64. Weichenthal S.A., Lavigne E., Evans G.J., Godri Pollitt K.J., Burnett R.T. Fine particulate matter and emergency room visits for respiratory illness. Effect modification by oxidative potential. Am. J. Respir. Crit. Care Med. 2016; 194(5):577-86. doi: 10.1164/rccm.201512-2434OC
65. World Health Organization. 9 out of 10 people worldwide breathe polluted air, but more countries are taking action. 2018. Available аt: http://www.who.int/news-room/detail/02-05-2018-9-out-of-10-people-worldwide-breathe-polluted-air-but-more-countries-are-taking-action
66. Wu C., Jain M.R., Li Q., Oka S., Li W., Kong A.N., Nagarajan N., Sadoshima J., Simmons W.J., Li H. Identification of Novel Nuclear Targets of Human Thioredoxin 1. Mol. Cell. Proteomics 2014; 13(12):3507-3518. doi: 10.1074/mcp.M114.04093152
67. Wyzga R.E., Rohr A.C. Long-term particulate matter exposure: attributing health effects to individual PM components. J. Air Waste Manag. Assoc. 2015; 65(5):523-43. doi: 10.1080/10962247.2015.1020396
68. Yang A., Wang M., Eeftens M., Beelen R., Dons E., Leseman D.L., Brunekreef B., Cassee F.R., Janssen N.A., Hoek G. Spatial variations and land use regression modeling of the oxidative potential of fine particles. Environ. Health Perspect. 2015; 123(11):1187-1192. doi: 10.1289/ehp.1408916
69. Ye Z.W., Zhang J., Townsend D.M., Tew K.D. Oxidative stress, redox regulation and diseases of cellular differentiation. Biochim. Biophys. Acta 2015; 1850(8):1607-1621. doi: 10.1016/j.bbagen.2014.11.010
70. Zheng X.Y., Ding H., Jiang L.N., Chen S.W., Zheng J.P., Qiu M., Zhou Y.X., Chen Q., Guan W.J. Association between air pollutants and asthma emergency room visits and hospital admissions in time series studies: a systematic review and meta-analysis. PLoS One 2015; 10(9):e0138146. doi: 10.1371/journal.pone.0138146
71. Zinellu E., Zinellu A., Giuseppe F.A., Carru C., Pinna P. Circulating biomarkers of oxidative stress in chronic obstructive pulmonary disease: a systematic review. Resp. Res. 2016; 17(1): 150. doi: 10.1186/s12931-016-0471-z
72. Øvrevik J., Refsnes M., Lag M., Holme J.A., Schwarze P.E. Activation of proinflammatory responses in cells of the airway mucosa by particulate matter: oxidant- and non-oxidant-mediated triggering mechanisms. Biomolecules 2015; 5(3):1399-1440. doi: 10.3390/biom5031399
Review
For citations:
Barskova L.S., Vitkina T.I. Regulation by thiol disulfide and antioxidant systems of oxidative stress induced by atmospheric suspended particles. Bulletin Physiology and Pathology of Respiration. 2019;(73):112-124. (In Russ.) https://doi.org/10.36604/1998-5029-2019-73-112-124