Preview

Bulletin Physiology and Pathology of Respiration

Advanced search

Regulation by thiol disulfide and antioxidant systems of oxidative stress induced by atmospheric suspended particles

https://doi.org/10.36604/1998-5029-2019-73-112-124

Abstract

The review is devoted to the role of thioredoxin and glutathione antioxidant systems in protection of the body against oxidative stress caused by exposure to micro-sized solid suspended particles of atmospheric air. The features of components and parameters of solid suspended particles determining their oxidative properties have been described. The focus is on intracellular and molecular mechanisms affecting many antioxidant reactions. The issues of regulation, modulation and maintenance of cellular redox homeostasis by key reducing thiols have been considered.

About the Authors

L. S. Barskova
Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration - Research Institute of Medical Climatology and Rehabilitation Treatment
Russian Federation

Lyudmila S. Barskova - Junior Staff Scientist, Laboratory of Medical Ecology and Recreational Resources.

73g Russkaya Str., Vladivostok, 690105



T. I. Vitkina
Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration - Research Institute of Medical Climatology and Rehabilitation Treatment
Russian Federation

Tatyana I. Vitkina - PhD, D.Sc. (Biol.), Professor RAS, Head of Laboratory of Medical Ecology and Recreational Resources.

73g Russkaya Str., Vladivostok, 690105




References

1. Strickland M.J., Hao H., Hu X., Chang H.H., Darrow L.A., Liu Y. Pediatric emergency visits and short-term changes in PM2.5 concentrations in the U.S. state of Georgia. Environ. Health Perspect. 2016; 124(5):690-696. doi: 10.1289/ehp.1509856

2. Vitkina T.I., Yankova V.I., Gvozdenko T.A., Denisenko Y.K., Golokhvast K.S. The formation of oxidative disorders in the population of Vladivostok under the influence of atmospheric microparticles. Byulleten ’ Vostochno-Sibirskogo nauchnogo tsentra Sibirskogo Otdeleniya RossiyskoyAkademii meditsinskikh nauk 2016; 1(3-2):82-85 (in Russian). doi: 10.12737/article_590823a47defa8.34126398

3. Styszko K., Samek L., Szramowiat K., Korzeniewska A., Kubisty K., Rakoczy-Lelek R., Kistler M., Giebl A. K. Oxidative potential of PM10 and PM2.5 collected at high air pollution site related to chemical composition: Krakow case study. Air Qual. Atmos. Health 2017; 9(10):1-15. doi: 10.1007/s11869-017-0499-3

4. Vitkina T.I., Yankova V.I., Gorodnyy VA. Dynamics of the level of lipid hydroperoxides in alveolar macrophages under exposure to model suspensions of a micro-sized atmospheric solid particles. Bioradikaly i antioksidanty 2016; 3(3):22-23 (in Russian).

5. Thurston G.D., Burnett R.T., Turner M.C., Shi Y., Krewski D., Lall R., Ito K., Jerrett M., Gapstur S.M., Diver W.R., Pope C.A. Ischemic heart disease mortality and long-term exposure to source-related components of U.S. fine particle air pollution. Environ. Health Perspect. 2016; 124(6):785-794. doi: 10.1289/ehp.1509777

6. Kalinina E.V., Chernov N.N., Novichkova M.D. The role of glutathione, glutathione transferase and glutaredoxin in the regulation of redox-dependent processes. Uspekhi biologicheskoy khimii 2014; 54:299-384 (in Russian).

7. Totlandsdal A.I., Ovrevik J., Cochran R.E., Herseth J.I., Bolling A.K., Lag M., Schwarze P., Lilleaas E., Holme J.A., Kubatova A. The occurrence of polycyclic aromatic hydrocarbons and their derivatives and the proinflammatory potential of fractionated extracts of diesel exhaust and wood smoke particles. J. Environ. Sci. Health. A Tox. Hazard Subst. Environ. Eng. 2014; 49(4):383-396. doi: 10.1080/10934529.2014.854586

8. Yankova V.I., Vitkina T.I., Zyumchenko N.E., Barskova L.S., Golokhvast K.S. The impact of model suspensions of micro-sized suspended particulate matter of atmospheric air on morphological and functional characteristics and parameters of lipid peroxidation of alveolar macrophages of Vistar's line rats. Zdorov’ye. Meditsinskaya ekologiya. Nauka 2017; (4):80-86 (in Russian). doi:10.5281/zenodo.835330

9. Vitkina T.I., Yankova VI., Gvozdenko T.A., Kuznetsov VL., Krasnikov D.V., Nazarenko A.V, Chaika V V, Smagin S.V., Tsatsakis A.M., Engin A.B., Karakitsios S.P., Sarigiannis D.A., Golokhvast K.S. The impact of multi-walled carbon nanotubes with different amount of metallic impurities on immunometabolic parameters in healthy volunteers. Food Chem. Toxicol. 2016; 87:138-147. doi:10.1016/j.fct.2015.11.023

10. Atkinson R.W., Kang S., Anderson H.R., Mills I.C., Walton H.A. Epidemiological time series studies of PM2.5 and daily mortality and hospital admissions: a systematic review and meta-analysis. Thorax 2014; 69(7):660-665. doi: 10.1136/thoraxjnl-2013-204492

11. Weichenthal S., Hoppin J.A., Reeves F. Obesity and the cardiovascular health effects of fine particulate air pollution. Obesity 2014; 22(7):1580-1589. doi: 10.1002/oby.20748

12. Bhatia M., McGrath K. L., Di Trapani G., Charoentong P., Shah F., King M. M., Clarke F.M., Tonissen K. F. The thioredoxin system in breast cancer cell invasion and migration. Redox Biol. 2016; 8:68-78. doi: 10.1016/j.redox.2015.12.004

13. Weichenthal S.A., Lavigne E., Evans G.J., Godri Pollitt K.J., Burnett R.T. Fine particulate matter and emergency room visits for respiratory illness. Effect modification by oxidative potential. Am. J. Respir. Crit. Care Med. 2016; 194(5):577-86. doi: 10.1164/rccm.201512-2434OC

14. Bwititi P.T., Chinkwo K. Oxidative stress markers in infectious respiratory diseases: current clinical practice. Int. J. Res. Med. Sci. 2016; 4(6):1802-1813. doi: http://dx.doi.org/10.18203/2320-6012.ijrms20161727

15. World Health Organization. 9 out of 10 people worldwide breathe polluted air, but more countries are taking action. 2018. Available аt: http://www.who.int/news-room/detail/02-05-2018-9-out-of-10-people-worldwide-breathe-polluted-air-but-more-countries-are-taking-action

16. Carmona J.J., Sofer T., Hutchinson J., Cantone L., Coull B., Maity A., Vokonas P., Lin X., Schwartz J., Baccarelli A.A. Short-term airborne particulate matter exposure alters the epigenetic landscape of human genes associated with the mitogen-activated protein kinase network: a cross-sectional study. Environ. Health 2014; 13:94. doi: 10.1186/1476-069X-13-94

17. Wu C., Jain M.R., Li Q., Oka S., Li W., Kong A.N., Nagarajan N., Sadoshima J., Simmons W.J., Li H. Identification of Novel Nuclear Targets of Human Thioredoxin 1. Mol. Cell. Proteomics 2014; 13(12):3507-3518. doi: 10.1074/mcp.M114.04093152

18. Cesaroni G., Forastiere F., Stafoggia M., Andersen Z.J., Badaloni C., Beelen R., Caracciolo B., de Faire U., Erbel R., Eriksen K.T., Fratiglioni L., Galassi C., Hampel R., Heier M., Hennig F., Hilding A., Hoffmann B., Houthuijs D., Jockel K.H., Korek M., Lanki T., Leander K., Magnusson P.K., Migliore E., Ostenson C.G., Overvad K., Pedersen N.L., J J.P., Penell J., Pershagen G., Pyko A., Raaschou-Nielsen O., Ranzi A., Ricceri F., Sacerdote C., Salomaa V., Swart W., Turunen A.W., Vineis P., Weinmayr G., Wolf K., de Hoogh K., Hoek G., Brunekreef B., Peters A. Long term exposure to ambient air pollution and incidence of acute coronary events: Prospective cohort study and meta-analysis in 11 European cohorts from the ESCAPE Project. BMJ 2014; 348:f7412. doi: 10.1136/bmj.f7412

19. Wyzga R.E., Rohr A.C. Long-term particulate matter exposure: attributing health effects to individual PM components. J. Air Waste Manag. Assoc. 2015; 65(5):523-43. doi: 10.1080/10962247.2015.1020396

20. Cheng H., Saffari A., Sioutas C., Forman H.J., Morgan T.E., Finch C.E.Nanoscale particulate matter from urban traffic rapidly induces oxidative stress and inflammation in olfactory epithelium with concomitant effects on brain. Environ. Health Perspect. 2016; 124(10):1537-1546. doi:10.1289/ehp134

21. Yang A., Wang M., Eeftens M., Beelen R., Dons E., Leseman D.L., Brunekreef B., Cassee F.R., Janssen N.A., Hoek G. Spatial variations and land use regression modeling of the oxidative potential of fine particles. Environ. Health Perspect. 2015; 123(11):1187-1192. doi: 10.1289/ehp.1408916

22. Couto N., Wood J., Barber J. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic. Biol. Med. 2016; 95:27-42. doi:10.1016/j.freeradbiomed.2016.02.028

23. Ye Z.W., Zhang J., Townsend D.M., Tew K.D. Oxidative stress, redox regulation and diseases of cellular differentiation. Biochim. Biophys. Acta 2015; 1850(8):1607-1621. doi: 10.1016/j.bbagen.2014.11.010

24. Delfino R.J., Wu J., Tjoa T., Gullesserian S.K., Nickerson B., Gillen D.L. Asthma morbidity and ambient air pollution: effect modification by residential traffic-related air pollution. Epidemiology 2014; 25(1):48-57. doi: 10.1097/EDE.0000000000000016

25. Zheng X.Y., Ding H., Jiang L.N., Chen S.W., Zheng J.P., Qiu M., Zhou Y.X., Chen Q., Guan W.J. Association between air pollutants and asthma emergency room visits and hospital admissions in time series studies: a systematic review and meta-analysis. PLoS One 2015; 10(9):e0138146. doi: 10.1371/journal.pone.0138146

26. Dominko K., Bikic D. Glutathionylation: a regulatory role of glutathione in physiological processes. Arh. Hig Rada Toksikol. 2018; 69(1):1-24. doi: 10.2478/aiht-2018-69-2966

27. Zinellu E., Zinellu A., Giuseppe F.A., Carru C., Pinna P. Circulating biomarkers of oxidative stress in chronic obstructive pulmonary disease: a systematic review. Resp. Res. 2016; 17(1): 150. doi: 10.1186/s12931-016-0471-z

28. Doyle K. Pollution particles damage blood vessels, may lead to heart disease. Reuters: New York, 2016. Available at: https://www.reuters.com/article/us-health-cardiovascular-pm2-5-pollution/pollution-particles-damage-blood-vessels-may-lead-to-heart-disease-idUSKCN12Q2LM

29. Øvrevik J., Refsnes M., Lag M., Holme J.A., Schwarze P.E. Activation of proinflammatory responses in cells of the airway mucosa by particulate matter: oxidant- and non-oxidant-mediated triggering mechanisms. Biomolecules 2015; 5(3):1399-1440. doi: 10.3390/biom5031399

30. Du Y., Xu X., Chu M., Guo Y, Wang J. Air particulate matter and cardiovascular disease: The epidemiological, biomedical and clinical evidence. J. Thorac. Dis. 2016; 8(1):Е8-Е19. doi:10.3978/j.issn.2072-1439.2015.11.37

31. Espinosa-Diez C., Miguel V, Mennerich D., Kietzmann T., Sanchez-Perez P., Cadenas S., Lamas S Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol. 2015; 6:183-197. doi:10.1016/j.redox.2015.07.008

32. Fang T., Zeng L., Gao D., Verma V, Stefaniak A.B., Weber R.J. Ambient size distributions and lung deposition of aerosol dithiothreitol-measured oxidative potential: contrast between soluble and insoluble particles. Environ. Sci. Technol. 2017; 51(12):6802-6811. doi: 10.1021/acs.est.7b01536

33. Fatani S.H. Biomarkers of oxidative stress in acute and chronic bronchial asthma. J. Asthma 2014; 51(6):578-584. doi: 10.3109/02770903.2014.892965

34. GBD 2015 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388(10053):1659-1724. doi: 10.1016/S0140-6736(16)31679-8

35. Golokhvast K.S., Vitkina T.I., Gvozdenko T.A., Kolosov V.P., Yankova VI., Kondratieva E.V., Gorkavaya A., Nazarenko A., Chaika V, Romanova T., Karabtsov A., Perelman Ju., Kiku P., Tsatsakis A. Impact of atmospheric microparticles on the development of oxidative stress in healthy city/industrial seaport residents. Oxid. Med. Cell. Longev. 2015; 2015:412173. doi:10.1155/2015/412173

36. Hansel N.N., Paulin L.M., Gassett A.J., Peng R.D., Alexis N., Fan V.S., Bleecker E., Bowler R., Comellas A.P., Dransfield M., Han M.K, Kim V, Krishnan J.A., Pirozzi C., Cooper C.B., Martinez F., Woodruff P. G., Breysse P.J., Barr R.G., Kaufman J.D. Design of the subpopulations and intermediate outcome measures in COPD (SPIROMICS) AIR Study. BMJ Open Resp. Res. 2017; 4(1):e000186. doi:10.1136/bmjresp-2017-000186

37. Hamad S.H., Schauer J.J., Antkiewicz D.S., Shafer M.M., Kadhim A.Kh. ROS production and gene expression in alveolar macrophages exposed to PM2.5 from Baghdad, Iraq: Seasonal trends and impact of chemical composition. Sci. Tot. Environ. 2016; 543(Pt A):739-745. doi: 10.1016/j.scitotenv.2015.11.065

38. Helmholtz Zentrum Munchen-German Research Center for Environmental Health. Particulate air pollution leads to increased heart attack risk. Science Daily: Rockville, USA; 2014. Available at: http: //www.sciencedaily.com/releases/2014/01/140122091617.htm.

39. Janssen N.A.H., Yang A., Strak M., Steenhof M., Hellack B., Gerlofs-Nijland M.E., Kuhlbusch T., Kelly F., Harrison R., Brunekreef B., Hoek G., Cassee F. Oxidative potential of particulate matter collected at sites with different source characteristics. Sci. Total Environ. 2014; 472:572-581. doi: 10.1016/j.scitotenv.2013.11.099

40. Jean-Jacques S., Simon D., Ferdinand S., Michael R. Oxidative potential of particles in different occupational environments: a pilot study. Ann. Occup. Hyg. 2015; 59(7):882-894. doi: 10.1093/annhyg/mev024

41. Krall J.R., Mulholland J.A., Russell A.G., Balachandran S., Winquist A., Tolbert P. E., Waller L.A., Sarnat S.E. Associations between source-specific fine particulate matter and emergency department visits for respiratory disease in four U.S. Cities. Environ. Health Perspect. 2017; 125(1):97-103. doi: 10.1289/EHP271

42. Larcombe A.N., Phan J.A., Kicic A., Perks K.L., Mead-Hunter R., Mullins B.J. Route of exposure alters inflammation and lung function responses to diesel exhaust. Inhal. Toxicol. 2014; 26(7):409-418. doi: 10.3109/08958378.2014.909910

43. Leveillard T., Ai't-Ali N. Cell signaling with extracellular thioredoxin and thioredoxinlike proteins: insight into their mechanisms of action. Oxid. Med. Cell. Longev. 2017; 2017: ID 8475125. doi: 10.1155/2017/8475125

44. Lu J., Holmgren A. The thioredoxin antioxidant system. Free Radic. Biol. Med. 2014; 66:75-87. doi: 10.1016/j.freeradbiomed.2013.07.036

45. Lu S.Y., Li Y.X., Zhang J.Q., Zhang T., Liu G.H., Huang M.Z., Li X., Ruan J.J., Kannan K., Qiu R.L. Associations between polycyclic aromatic hydrocarbon (PAH) exposure and oxidative stress in people living near e-waste recycling facilities in China. Environ. Int. 2016; 94:161-169. doi: 10.1016/j.envint.2016.05.021

46. Matsuzawa A. Thioredoxin and redox signaling: Roles of the thioredoxin system in control of cell fate. Arch. Bio-chem. Biophys. 2017; 617:101-105. doi: 10.1016/j.abb.2016.09.011

47. Moreno T., Kelly F. J., Dunster C., Oliete A., Martins V, Reche C., Minguillon M.C., Amato F., Capdevila M., Miguel E., Querol X. Oxidative potential of subway PM2.5. Atmos. Environ 2017; 148:230-238. doi: 10.1016/j.atmo-senv.2016.10.045

48. National PEP Weighing Laboratory, US-EPA, Region 4. PM2.5. Objectives and History. Available at: https://ar-chive. epa.gov/pesticides/region4/sesd/pm25/web/html/p2.html

49. Netto L.E.S., Antunes F. The roles of peroxiredoxin and thioredoxin in hydrogen peroxide sensing and in signal transduction. Mol. Cells 2016; 39(1):65-71. doi: 10.14348/molcells.2016.2349

50. Palde P.B., Carroll K.S. A universal entropy-driven mechanism for thioredoxin-target recognition. Proc. Natl. A cad. Sci USA 2015; 112(26):7960-7965. doi: m.m73/pnas.1504376112

51. Pardo M., Porat Z., Rudich A., Schauer J.J., Rudich Y. Repeated exposures to roadside particulate matter extracts suppresses pulmonary defense mechanisms, resulting in lipid and protein oxidative damage. Environ. Pollut. 2015; 210:227-237. doi: 10.1016/j.envpol.2015.12.009

52. Paulin L., Hansel N. Particulate air pollution and impaired lung function. F1000Res. 2016; 5: F1000 Faculty Rev-201. doi: 10.12688/f1000research.7108.1

53. Robinson D.L. Composition and oxidative potential of PM2.5 pollution and health. J. Thorac. Dis. 2017; 9(3):444-447. doi:10.21037/jtd.2017.03.92

54. Schmidt H.H., Stocker R., Vollbracht C., Paulsen G., Riley D., Daiber A., Cuadrado A. Antioxidants in translational medicine. Antioxid. Redox Signal. 2015; 23(14): 1130-1143. doi: 10.1089/ars.2015.6393

55. Boukhenouna S., Wilson M.A, Bahmed K., Kosmider B. Reactive oxygen species in chronic obstructive pulmonary disease. Oxid. Med. Cell. Longev. 2018; 2018: ID 5730395. doi: 10.1155/2018/5730395

56. Schulze F., Gao X., Virzonis D., Damiati S., Schneider M.R., Kodzius R. Air quality effects on human health and approaches for its assessment through microfluidic chips. Genes (Basel) 2017; 8(10):Е244. doi: 10.3390/genes8100244

57. Shang Y, Zhang L., Jiang Y, Li Y, Lu P. Airborne quinones induce cytotoxicity and DNA damage in human lung epithelial A549 cells: the role of reactive oxygen species. Chemosphere 2014; 100:42-49. doi: 10.1016/j.chemo-sphere.2013.12.079

58. Strickland M.J., Hao H., Hu X., Chang H.H., Darrow L.A., Liu Y. Pediatric emergency visits and short-term changes in PM2.5 concentrations in the U.S. state of Georgia. Environ. Health Perspect. 2016; 124(5):690-696. doi: 10.1289/ehp.1509856

59. Styszko K., Samek L., Szramowiat K., Korzeniewska A., Kubisty K., Rakoczy-Lelek R., Kistler M., Giebl A. K. Oxidative potential of PM10 and PM2.5 collected at high air pollution site related to chemical composition: Krakow case study. Air Qual. Atmos. Health 2017; 9(10):1-15. doi: 10.1007/s11869-017-0499-3

60. Thurston G.D., Burnett R.T., Turner M.C., Shi Y., Krewski D., Lall R., Ito K., Jerrett M., Gapstur S.M., Diver W.R., Pope C.A. Ischemic heart disease mortality and long-term exposure to source-related components of U.S. fine particle air pollution. Environ. Health Perspect. 2016; 124(6):785-794. doi: 10.1289/ehp.1509777

61. Totlandsdal A.I., Ovrevik J., Cochran R.E., Herseth J.I., Bolling A.K., Lag M., Schwarze P., Lilleaas E., Holme J.A., Kubatova A. The occurrence of polycyclic aromatic hydrocarbons and their derivatives and the proinflammatory potential of fractionated extracts of diesel exhaust and wood smoke particles. J. Environ. Sci. Health. A Tox. Hazard Subst. Environ. Eng. 2014; 49(4):383-396. doi: 10.1080/10934529.2014.854586

62. Vitkina T.I., Yankova VI., Gvozdenko T.A., Kuznetsov VL., Krasnikov D.V., Nazarenko A.V, Chaika V V, Smagin S.V., Tsatsakis A.M., Engin A.B., Karakitsios S.P., Sarigiannis D.A., Golokhvast K.S. The impact of multi-walled carbon nanotubes with different amount of metallic impurities on immunometabolic parameters in healthy volunteers. Food Chem. Toxicol. 2016; 87:138-147. doi:10.1016/j.fct.2015.11.023

63. Weichenthal S., Hoppin J.A., Reeves F. Obesity and the cardiovascular health effects of fine particulate air pollution. Obesity 2014; 22(7):1580-1589. doi: 10.1002/oby.20748

64. Weichenthal S.A., Lavigne E., Evans G.J., Godri Pollitt K.J., Burnett R.T. Fine particulate matter and emergency room visits for respiratory illness. Effect modification by oxidative potential. Am. J. Respir. Crit. Care Med. 2016; 194(5):577-86. doi: 10.1164/rccm.201512-2434OC

65. World Health Organization. 9 out of 10 people worldwide breathe polluted air, but more countries are taking action. 2018. Available аt: http://www.who.int/news-room/detail/02-05-2018-9-out-of-10-people-worldwide-breathe-polluted-air-but-more-countries-are-taking-action

66. Wu C., Jain M.R., Li Q., Oka S., Li W., Kong A.N., Nagarajan N., Sadoshima J., Simmons W.J., Li H. Identification of Novel Nuclear Targets of Human Thioredoxin 1. Mol. Cell. Proteomics 2014; 13(12):3507-3518. doi: 10.1074/mcp.M114.04093152

67. Wyzga R.E., Rohr A.C. Long-term particulate matter exposure: attributing health effects to individual PM components. J. Air Waste Manag. Assoc. 2015; 65(5):523-43. doi: 10.1080/10962247.2015.1020396

68. Yang A., Wang M., Eeftens M., Beelen R., Dons E., Leseman D.L., Brunekreef B., Cassee F.R., Janssen N.A., Hoek G. Spatial variations and land use regression modeling of the oxidative potential of fine particles. Environ. Health Perspect. 2015; 123(11):1187-1192. doi: 10.1289/ehp.1408916

69. Ye Z.W., Zhang J., Townsend D.M., Tew K.D. Oxidative stress, redox regulation and diseases of cellular differentiation. Biochim. Biophys. Acta 2015; 1850(8):1607-1621. doi: 10.1016/j.bbagen.2014.11.010

70. Zheng X.Y., Ding H., Jiang L.N., Chen S.W., Zheng J.P., Qiu M., Zhou Y.X., Chen Q., Guan W.J. Association between air pollutants and asthma emergency room visits and hospital admissions in time series studies: a systematic review and meta-analysis. PLoS One 2015; 10(9):e0138146. doi: 10.1371/journal.pone.0138146

71. Zinellu E., Zinellu A., Giuseppe F.A., Carru C., Pinna P. Circulating biomarkers of oxidative stress in chronic obstructive pulmonary disease: a systematic review. Resp. Res. 2016; 17(1): 150. doi: 10.1186/s12931-016-0471-z

72. Øvrevik J., Refsnes M., Lag M., Holme J.A., Schwarze P.E. Activation of proinflammatory responses in cells of the airway mucosa by particulate matter: oxidant- and non-oxidant-mediated triggering mechanisms. Biomolecules 2015; 5(3):1399-1440. doi: 10.3390/biom5031399


Review

For citations:


Barskova L.S., Vitkina T.I. Regulation by thiol disulfide and antioxidant systems of oxidative stress induced by atmospheric suspended particles. Bulletin Physiology and Pathology of Respiration. 2019;(73):112-124. (In Russ.) https://doi.org/10.36604/1998-5029-2019-73-112-124

Views: 430


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-5029 (Print)