Preview

Bulletin Physiology and Pathology of Respiration

Advanced search

MODERN CONCEPTS OF THE ROLE OF TRANSIENT RECEPTOR POTENTIAL CHANNELS IN CHRONIC OBSTRUCTIVE PULMONARY DISEASE PATHOGENESIS (REVIEW)

https://doi.org/10.36604/1998-5029-2019-74-119-130

Abstract

The article analyzes the results of recent studies, forming the modern concept of the pathogenesis of chronic obstructive pulmonary disease (COPD) as a disease with an autoimmune component, with an emphasis on the special role of bronchial epithelium and macrophages in the organization of the primary immune response. Of great interest is the evidence of the receptor function of some transient receptor potential (TRP) channels in relation to cigarette smoke and particulate matter – the main etiological factors of COPD. It was found that these channels can be expressed on epithelium and cells of innate immunity,  and can also exert a modulating effect on the course of the inflammatory reaction. At present, relatively little attention is paid to the study of the possible role of TRP channels in COPD, despite the available facts indicate their key role in this disease, especially at its initial stages. This review is aimed at systematizing the results of the studies conducted in this field.

About the Authors

I. Yu. Sugaylo
Far Eastern Scientific Center of Physiology and Pathology of Respiration
Russian Federation

PhD Postgraduate student

22 Kalinina Str., Blagoveshchensk, 675000, Russian Federation 



D. E. Naumov
Far Eastern Scientific Center of Physiology and Pathology of Respiration
Russian Federation

MD, PhD (Med.), Head of the Laboratory of Molecular and Translational Research

22 Kalinina Str., Blagoveshchensk, 675000, Russian Federation




References

1. Arkhipov V.V., Arkhipova D.E., Stukalina E.Yu., Lazarev A.A. COPD phenotypes in Russia: characteristics and treatment. Prakticheskaya pul'monologiya 2016; 3:20–25 (in Russian).

2. Efimenko E.V, Efremova O.A., Khodosh E.M. Diagnostic symptoms for a probabilistic risk assessment of exacerbations of chronic obstructive pulmonary disease. Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya: Meditsina. Farmatsiya 2016; 5(226):15–20 (in Russian).

3. Kotova O.O., Gassan D.A., Naumov D.E., Sheludko E.G. Effect of TRPA1 gene polymorphisms on predisposition to the formation of bronchial asthma. Bûlleten' fiziologii i patologii dyhaniâ 2019; 73:27–33(in Russian). doi: 10.36604/1998-5029-2019-73-27-33

4. Krysanov K.S. Analysis the cost of chronic obstructive pulmonary disease in Russian Federation. Kachestvennaya klinicheskaya praktika 2014; 2:51–57 (in Russian).

5. Abbott-Banner K., Poll C., Verkuyl J.M. Targeting TRP channels in airway disorders. Curr. Top. Med. Chem. 2013; 13(3):310–321. doi: 10.2174/1568026611313030008

6. Afonso A.S., Verhamme K.M., Sturkenboom M.C., Brusselle G.G. COPD in the general population: prevalence, incidence and survival. Respir. Med. 2011; 105(12):1872–1884. doi: 10.1016/j.rmed.2011.06.012

7. Alenmyr L., Uller L., Greiff L., Högestätt E.D., Zygmunt P.M. TRPV4-mediated calcium influx and ciliary activity in human native airway epithelial cells. Basic Clin. Pharmacol. Toxicol. 2014; 114(2):210–216. doi: 10.1111/bcpt.12135

8. Alvarez D.F., King J.A., Weber D., Addison E., Liedtke W., Townsley M.I. Transient receptor potential vanilloid 4-mediated disruption of the alveolar septal barrier: a novel mechanism of acute lung injury. Circ. Res. 2006; 99(9):988–995. doi: 10.1161/01.RES.0000247065.11756.19

9. Aoshiba K., Nagai A. Oxidative stress, cell death, and other damage to alveolar epithelial cells induced by cigarette smoke. Tob. Induc. Dis. 2003; 1(3):219–226. doi: 10.1186/1617-9625-1-3-219

10. Balmes J., Becklake M., Blanc P., Henneberger P., Kreiss K., Mapp C., Milton D., Schwartz D., Toren K., Viegi G., Environmental and Occupational Health Assembly, American Thoracic Society. American Thoracic Society Statement: Occupational contribution to the burden of airway disease. Am. J. Respir. Crit. Care Med. 2003; 167(5):787–797. doi: 10.1164/rccm.167.5.787

11. Banner K.H., Igney F., Poll C. TRP channels: emerging targets for respiratory disease. Pharmacol. Ther. 2011; 130(3):371–384. doi: 10.1016/j.pharmthera.2011.03.005

12. Barnes P.J., Cosio M.G. Characterization of T lymphocytes in chronic obstructive pulmonary disease. PLoS Med. 2004; 1(1):e20. doi: 10.1016/j.pharmthera.2011.03.005

13. Baxter M., Eltom S., Dekkak B., Yew-Booth L., Dubuis E.D., Maher S.A., Belvisi M.G., Birrell M.A. Role of transient receptor potential and pannexin channels in cigarette smoke-triggered ATP release in the lung. Thorax 2014; 69(12):1080–1089. doi: 10.1136/thoraxjnl-2014-205467

14. Belvisi M.G., Birrell M.A. The emerging role of transient receptor potential channels in chronic lung disease. Eur. Respir. J. 2017; 50(2):1601357. doi: 10.1183/13993003.01357-2016

15. Buist A.S., McBurnie M.A., Vollmer W.M., Gillespie S., Burney P., Mannino D.M., Menezes A.M., Sullivan S.D., Lee T.A., Weiss K.B., Jensen R.L., Marks G.B., Gulsvik A., Nizankowska-Mogilnicka E., BOLD Collaborative Research Group. International variation in the prevalence of COPD (the BOLD Study): a population-based prevalence study. Lancet 2007; 370(9589):741–750. doi: 10.1016/S0140-6736(07)61377-4

16. Clapp P.W., Pawlak E.A., Lackey J.T., Keating J.E., Reeber S.L., Glish G.L., Jaspers I. Flavored e-cigarette liquids and cinnamaldehyde impair respiratory innate immune cell function. Am. J. Physiol. Lung Cell. Mol. Physiol. 2017; 313(2):L278–L292. doi: 10.1152/ajplung.00452.2016

17. Cosio M.G., Saetta M., Agusti A. Immunologic aspects of chronic obstructive pulmonary disease. N. Engl. J. Med. 2009; 360(23):2445–2454. doi: 10.1056/NEJMra0804752.

18. Du Q., Liao Q., Chen C., Yang X., Xie R., Xu J. The role of transient receptor potential vanilloid 1 in common diseases of the digestive tract and the cardiovascular and respiratory system. Front. Physiol. 2019; 10:1064. doi: 10.3389/fphys.2019.01064

19. Eisner M.D., Anthonisen N., Coultas D., Kuenzli N., Perez-Padilla R., Postma D., Romieu I., Silverman E.K., Balmes J.R., Committee on Nonsmoking COPD, Environmental and Occupational Health Assembly. An official American Thoracic Society public policy statement: Novel risk factors and the global burden of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2010; 182(5):693–718. doi: 10.1164/rccm.200811-1757ST

20. Embgenbroich M., Burgdorf S. Current concepts of antigen cross-presentation. Front. Immunol. 2018; 9:1643. doi: 10.3389/fimmu.2018.01643

21. Fang L., Gao P., Bao H., Tang X., Wang B., Feng Y., Cong S., Juan J., Fan J., Lu K., Wang N., Hu Y., Wang L. Chronic obstructive pulmonary disease in China: a nationwide prevalence study. Lancet. Respir. Med. 2018; 6(6):421–430. doi: 10.1016/S2213-2600(18)30103-6

22. Fleming J.S., Conway J., Bennett M.J., Tossici-Bolt L., Guy M., Blé F.X., McCrae C., Carlsson M., Bondesson E. Quantitative assessment of mucociliary clearance in smokers with mild-to-moderate chronic obstructive pulmonary disease and chronic bronchitis from planar radionuclide imaging using the change in penetration index. J. Aerosol Med. Pulm. Drug Deliv. 2019; 32(4):175–188. doi: 10.1089/jamp.2017.1441

23. Foster W.M. Mucociliary transport and cough in humans. Pulm. Pharmacol. Ther. 2002; 15(3):277–282. doi: 10.1006/pupt.2002.0351

24. GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392(10159):1736–1788. doi: 10.1016/S0140-6736(18)32203-7

25. Ghany M.F., Makhlouf H.A., Gaber N. Downregulation of regulatory T cells in patients with chronic obstructive pulmonary disease: relation to disease severity. Egypt. J. Chest Dis. Tuberc. 2018; 67(4):351–355. doi: 10.4103/ejcdt.ejcdt_63_18

26. Golpe R., Suárez-Valor M., Martín-Robles I., Sanjuán-López P., Cano-Jiménez E., Castro-Añón O., Pérez de Llano L.A. Mortality in COPD patients according to clinical phenotypes. Int. J. Chron. Obstruct. Pulmon. Dis. 2018; 13:1433–1439. doi: 10.2147/COPD.S159834

27. Grace M.S., Baxter M., Dubuis E., Birrell M.A., Belvisi M.G. Transient receptor potential (TRP) channels in the airway: role in airway disease. Br. J. Pharmacol. 2014; 171(10):2593–2607. doi: 10.1111/bph.12538

28. Grumelli S., Corry D.B., Song L.Z., Song L., Green L., Huh J., Hacken J., Espada R., Bag R., Lewis D.E., Kheradmand F. An immune basis for lung parenchymal destruction in chronic obstructive pulmonary disease and emphysema. PLoS Med. 2004; 1(1):e8. doi: 10.1371/journal.pmed.0010008

29. Hamanaka K., Jian M.Y., Townsley M.I., King J.A., Liedtke W., Weber D.S., Eyal F.G., Clapp M.M., Parker J.C. TRPV4 channels augment macrophage activation and ventilator-induced lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 2010; 299(3):L353–362. doi: 10.1152/ajplung.00315.2009

30. Hasday J.D., Bascom R., Costa J.J., Fitzgerald T., Dubin W. Bacterial endotoxin is an active component of cigarette smoke. Chest 1999; 115(3):829–835. doi: 10.1378/chest.115.3.829

31. Jubrail J., Kurian N., Niedergang F. Macrophage phagocytosis cracking the defect code in COPD. Biomed. J. 2017; 40(6):305–312. doi: 10.1016/j.bj.2017.09.004

32. Khalil M., Babes A., Lakra R., Försch S., Reeh P.W., Wirtz S., Becker C., Neurath M.F., Engel M.A. Transient receptor potential melastatin 8 ion channel in macrophages modulates colitis through a balance-shift in TNF-alpha and interleukin-10 production. Mucosal Immunol. 2016; 9(6):1500–1513. doi: 10.1038/mi.2016.16

33. Kim M.E., Na J.Y., Lee J.S. Anti-inflammatory effects of trans-cinnamaldehyde on lipopolysaccharide-stimulated macrophage activation via MAPKs pathway regulation. Immunopharmacol. Immunotoxicol. 2018; 40(3):219–224. doi: 10.1080/08923973.2018.1424902

34. Lamb J.G., Romero E.G., Lu Z., Marcus S.K., Peterson H.C., Veranth J.M., Deering-Rice C.E., Reilly C.A. Activation of human transient receptor potential melastatin-8 (TRPM8) by calcium-rich particulate materials and effects on human lung cells. Mol. Pharmacol. 2017; 92(6):653–664. doi: 10.1124/mol.117.109959

35. Li J., Kanju P., Patterson M., Chew W.L., Cho S.H., Gilmour I., Oliver T., Yasuda R., Ghio A., Simon S.A., Liedtke W. TRPV4-mediated calcium influx into human bronchial epithelia upon exposure to diesel exhaust particles. Environ. Health Perspect. 2011; 119(6):784–793. doi: 10.1289/ehp.1002807

36. Li M., Li Q., Yang G., Kolosov V.P., Perelman J.M., Zhou X.D. Cold temperature induces mucin hypersecretion from normal human bronchial epithelial cells in vitro through a transient receptor potential melastatin 8 (TRPM8)-mediated mechanism. J. Allergy. Clin. Immunol. 2011; 128(3):626–634. doi: 10.1016/j.jaci.2011.04.032

37. McGarvey L.P., Butler C.A., Stokesberry S., Polley L., McQuaid S., Abdullah H., Ashraf S., McGahon M.K., Curtis T.M., Arron J., Choy D., Warke T.J., Bradding P., Ennis M., Zholos A., Costello R.W., Heaney L.G. Increased expression of bronchial epithelial transient receptor potential vanilloid 1 channels in patients with severe asthma. J. Allergy Clin. Immunol. 2014; 133(3):704–712.e4. doi: 10.1016/j.jaci.2013.09.016

38. Mukhopadhyay I., Gomes P., Aranake S., Shetty M., Karnik P., Damle M., Kuruganti S., Thorat S., KhairatkarJoshi N. Expression of functional TRPA1 receptor on human lung fibroblast and epithelial cells. J. Recept. Signal. Transduct. Res. 2011; 31(5):350–358. doi: 10.3109/10799893.2011.602413

39. Mukhopadhyay I., Kulkarni A., Khairatkar-Joshi N. Blocking TRPA1 in respiratory disorders: does it hold a promise? Pharmaceuticals (Basel) 2016; 9(4):E70. doi: 10.3390/ph9040070

40. Nassenstein C., Kwong K., Taylor-Clark T., Kollarik M., Macglashan D.M., Braun A., Undem B.J. Expression and function of the ion channel TRPA1 in vagal afferent nerves innervating mouse lungs. J. Physiol. 2008; 586(6):1595–1604. doi: 10.1113/jphysiol.2007.148379

41. Nie Y., Huang C., Zhong S., Wortley M.A., Luo Y., Luo W., Xie Y., Lai K., Zhong N. Cigarette smoke extract (CSE) induces transient receptor potential ankyrin 1(TRPA1) expression via activation of HIF1α in A549 cells. Free Radic. Biol. Med. 2016; 99:498–507. doi: 10.1016/j.freeradbiomed.2016.07.028

42. Nilius B., Owsianik G. The transient receptor potential family of ion channels. Genome Biol. 2011; 12(3):218. doi: 10.1186/gb-2011-12-3-218

43. Ninomiya Y., Tanuma S.I., Tsukimoto M. Differences in the effects of four TRPV1 channel antagonists on lipopolysaccharide-induced cytokine production and COX-2 expression in murine macrophages. Biochem. Biophys. Res. Commun. 2017; 484(3):668–674. doi: 10.1016/j.bbrc.2017.01.173

44. Paulin L.M., Diette G.B., Blanc P.D., Putcha N., Eisner M.D., Kanner R.E., Belli A.J., Christenson S., Tashkin D.P., Han M., Barr R.G., Hansel N.N., SPIROMICS Research Group. Occupational exposures are associated with worse morbidity in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2015; 191(5):557–565. doi: 10.1164/rccm.201408-1407OC

45. Polverino F., Seys L.J., Bracke K.R., Owen C.A. B cells in chronic obstructive pulmonary disease: moving to center stage. Am. J. Physiol. Lung Cell. Mol. Physiol. 2016; 311(4):L687–L695. doi: 10.1152/ajplung.00304.2016

46. Prasad P., Yanagihara A.A., Small-Howard A.L., Turner H., Stokes A.J. Secretogranin III directs secretory vesicle biogenesis in mast cells in a manner dependent upon interaction with chromogranin A. J. Immunol. 2008; 181(7):5024–5034. doi: 10.4049/jimmunol.181.7.5024

47. Rennard S.I., Vestbo J. COPD: the dangerous underestimate of 15%. Lancet 2006; 367(9518):1216–1219. doi: 10.1016/S0140-6736(06)68516-4

48. Roh J.S., Sohn D.H. Damage-associated molecular patterns in inflammatory diseases. Immune Netw. 2018; 18(4):e27. doi: 10.4110/in.2018.18.e27.

49. Sabnis A.S., Reilly C.A., Veranth J.M., Yost G.S. Increased transcription of cytokine genes in human lung epithelial cells through activation of a TRPM8 variant by cold temperatures. Am. J. Physiol. Lung Cell. Mol. Physiol. 2008; 295(1):L194–200. doi: 10.1152/ajplung.00072.2008

50. Salvi S.S., Barnes P.J. Chronic obstructive pulmonary disease in non-smokers. Lancet 2009; 374(9691):733–743. doi: 10.1016/S0140-6736(09)61303-9

51. Scheraga R.G., Abraham S., Niese K.A., Southern B.D., Grove L.M., Hite R.D., McDonald C., Hamilton T.A., Olman M.A. TRPV4 mechanosensitive ion channel regulates lipopolysaccharide-stimulated macrophage phagocytosis. J. Immunol. 2016; 196(1):428–436. doi: 10.4049/jimmunol.1501688

52. Schirnhofer L., Lamprecht B., Vollmer W.M., Allison M.J., Studnicka M., Jensen R.L., Buist A.S. COPD prevalence in Salzburg, Austria: results from the burden of obstructive lung disease (BOLD) study. Chest 2007; 131(1):29–36. doi: 10.1378/chest.06-0365

53. Svartengren M., Falk R., Philipson K. Long-term clearance from small airways decreases with age. Eur. Respir. J. 2005; 26(4):609–615. doi: 10.1183/09031936.05.00002105

54. Tóth B.I., Benko S., Szöllosi A.G., Kovács L., Rajnavölgyi E., Bíró T. Transient receptor potential vanilloid-1 signaling inhibits differentiation and activation of human dendritic cells. FEBS Lett. 2009; 583(10):1619–1624. doi: 10.1016/j.febslet.2009.04.031

55. Wang J., Yang G., Li M., Zhou X. Transient receptor potential melastatin 8 (TRPM8)-based mechanisms underlie both the cold temperature-induced inflammatory reactions and the synergistic effect of cigarette smoke in human bronchial epithelial (16HBE) cells. Front. Physiol. 2019; 10:285. doi: 10.3389/fphys.2019.00285

56. Wang M., Zhang Y., Xu M., Zhang H., Chen Y., Chung K.F., Adcock I.M., Li F. Roles of TRPA1 and TRPV1 in cigarette smoke -induced airway epithelial cell injury model. Free Radic. Biol. Med. 2019; 134:229–238. doi: 10.1016/j.freeradbiomed.2019.01.004

57. Xing H., Ling J.X., Chen M., Johnson R.D., Tominaga M., Wang C.Y., Gu J. TRPM8 mechanism of autonomic nerve response to cold in respiratory airway. Mol. Pain 2008; 4:22. doi: 10.1186/1744-8069-4-22

58. Xiong M, Wang J, Guo M, Zhou Q, Lu W. TRPM8 genetic variations associated with COPD risk in the Chinese Han population. Int. J. Chron. Obstruct. Pulmon. Dis. 2016; 11:2563–2571. doi: 10.2147/COPD.S109026

59. Xu M., Zhang Y., Wang M., Zhang H., Chen Y., Adcock I.M., Chung K.F., Mo J., Zhang Y., Li F. TRPV1 and TRPA1 in lung inflammation and airway hyperresponsiveness induced by fine particulate matter (PM2.5). Oxid. Med. Cell. Longev. 2019; 2019:7450151. doi: 10.1155/2019/7450151

60. Yin P., Jiang C.Q., Cheng K.K., Lam T.H., Lam K.H., Miller M.R., Zhang W.S., Thomas G.N., Adab P. Passive smoking exposure and risk of COPD among adults in China: the Guangzhou Biobank Cohort Study. Lancet 2007; 370(9589):751–757. doi: 10.1016/S0140-6736(07)61378-6

61. Zhao J.F., Shyue S.K., Kou Y.R., Lu T.M., Lee T.S. Transient Receptor Potential Ankyrin 1 Channel Involved in Atherosclerosis and Macrophage-Foam Cell Formation. Int. J. Biol. Sci. 2016; 12(7):812–823. doi: 10.7150/ijbs.15229

62. Zhu G., ICGN Investigators, Gulsvik A., Bakke P., Ghatta S., Anderson W., Lomas D.A., Silverman E.K., Pillai S.G. Association of TRPV4 gene polymorphisms with chronic obstructive pulmonary disease. Hum. Mol. Genet. 2009; 18(11):2053–2062. doi: 10.1093/hmg/ddp111


Review

For citations:


Sugaylo I.Yu., Naumov D.E. MODERN CONCEPTS OF THE ROLE OF TRANSIENT RECEPTOR POTENTIAL CHANNELS IN CHRONIC OBSTRUCTIVE PULMONARY DISEASE PATHOGENESIS (REVIEW). Bulletin Physiology and Pathology of Respiration. 2019;(74):119-130. (In Russ.) https://doi.org/10.36604/1998-5029-2019-74-119-130

Views: 411


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-5029 (Print)