Preview

Bulletin Physiology and Pathology of Respiration

Advanced search

MEMBRANE FATTY ACIDS TRANSPORT (REVIEW)

Abstract

Docosahexaenoic and arachidonic acids are extremely important for the normal fetus growth during pregnancy. As they cannot be synthesized by a fetus and placenta, the fetus gets them from mother’s blood through placenta transportation. The literature review deals with the mechanism of long-chained fatty acids transportation mechanism which occurs in two ways: passive diffusion through the membrane and transportation with the special proteins. The latter are presented by FABPpm/GOT2, FABP, FATP, caveolin-1 and FAT/CD36. A big part of the article is devoted to the features of fatty acids transportation at pregnancy. It includes three stages: dissociation with the protein complex, transportation through plasmatic membrane and their binding with intracellular proteins. pFABPpm localized on the plasmatic membrane of the maternal side of placenta, FATP-1 and FATP-4 play an important role in the selective transportation of docosahexaenoic and arachidonic acids. FABP directs fatty acids into different points inside syncytiotrophoblast or into umbilical cord plasma. The conclusion was made about the fact that the transportation of long-chained fatty acids to the fetus is the result of a number of processes which occur in a mother and in a fetoplacental complex.

About the Authors

Inna V. Dovzhikova
Far Eastern Scientific Center of Physiology and Pathology of Respiration SB RAMS
Russian Federation


Mikhail T. Lutsenko
Far Eastern Scientific Center of Physiology and Pathology of Respiration SB RAMS
Russian Federation


References

1. Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36 / N.A.Abumrad [et al.] // J. Biol. Chem. 1993. Vol.268, №24. P.17665–17668.

2. Abumrad N.A., Park J.H., Park C.R. Permeation of long-chain fatty acid into adipocytes. Kinetics, specificity, and evidence for involvement of a membrane protein // J. Biol. Chem. 1984. Vol.259, №14. P.8945–8953.

3. Biochemical EFA status of mothers and their neonates after normal pregnancy / M.D.Al [et al.] // Early Hum. Dev. 1990. Vol.24, №3. P.239–248.

4. High polyunsaturated fatty acid, thromboxane A2, and alpha-fetoprotein concentrations at the human feto-maternal interface / C.Benassayag [et al.] // J. Lipid Res. 1997. Vol.38, №2. P.276–286.

5. Berghaus T.M., Demmelmair H., Koletzko B. Fatty acid composition of lipid classes in maternal and cord plasma at birth // Eur. J. Pediatr. 1998. Vol.157, №9.P.763–768.

6. Hypoxia regulates the expression of fatty acid-binding proteins in primary term human trophoblasts/ Т.Biron-Shental [et al.] // Am. J. Obstet. Gynecol. 2007. Vol.197, №5. P.511–516.

7. Alterations in the fatty acid composition of rat brain cells (neurons, astrocytes, and oligodendrocytes) and of subcellular fractions (myelin and synaptosomes) induced by a diet devoid of n23 fatty acids / J.M. Bourre [et al.] // J. Neurochem. 1984. Vol.43, №2. P.342–348.

8. Brown D.A., London E. Functions of lipid rafts in biological membranes // Annu. Rev. Cell Dev. Biol. 1998. Vol.14.P.111–136.

9. Detection and cellular localization of plasma membrane-associated and cytoplasmic fatty acid-binding proteins in human placenta / F.M.Campbell [et al.] // Placenta. 1998. Vol.19, №5-6. P.409–415.

10. Uptake of long chain fatty acids by human placental choriocarcinoma (BeWo) cells: role of plasma membrane fatty acid-binding protein / F.M.Campbell [et al.] // J. Lipid Res. 1997. Vol.38, №12. P.2558–2568.

11. Campbell F.M., Dutta-Roy A.K. Plasma membrane fatty acid-binding protein (FABPpm) is exclusively located in the maternal facing membranes of the human placenta // FEBS Lett. 1995. Vol.375, №3. P.227–230.

12. Plasma membrane fatty-acid-binding protein in human placenta: identification and characterization / F.M.Campbell [et al.] // Biochem. Biophys. Res. Commun. 1995. Vol.209, №3. P.1011–1017.

13. Cha Y.I., Solnica-Krezel L., DuBois R.N. Fishing for prostanoids: deciphering the developmental functions of cyclooxygenase-derived prostaglandins // Dev. Biol. 2006. Vol.289, №2. P.263–272.

14. Essential fatty-acids interconversion in the human fetal liver / J.Chambaz [et al.] // Biol. Neonate. 1985. Vol.47, №3. P.136–140.

15. Role of CD36 in membrane transport and utilization of long-chain fatty acids by different tissues / C.T.Coburn [et al.] // J. Mol. Neurosci. 2001. Vol.16, №2-3. P.117–121.

16. Cunningham P., McDermott L. Long chain PUFA transport in human term placenta // J. Nutr. 2009. Vol.139, №4. P.636–639.

17. Dutta-Roy A.K. Cellular uptake of long-chain fatty acids: role of membrane-associated fatty-acid-binding: transport proteins // Cell. Mol. Life Sci. 2000.Vol.57, №10.P.1360–1372.

18. Dutta-Roy A.K. Fatty acid transport and metabolism in the fetoplacental unit and the role of fatty acid-binding proteins // J. Nutr. Biochem. 1997. Vol.8, №10. P.548–557.

19. Dutta-Roy A.K. Transport mechanisms for long-chain polyunsaturated fatty acids in the human placenta // Am. J. Clin. Nutr. 2000. Vol.71, №1 (Suppl.). P.315–322.

20. Transport of long chain polyunsaturated fatty acids across the human placenta: role of fatty acid-binding proteins / A.K.Dutta-Roy [et al.] // In: Y.S.Huang, D.Mills (eds.). g-Linolenic acid: metabolism and its role in nutrition and medicine. New York: AOCS Press, 1996. P.42–53.

21. Translocation of long chain fatty acids across the plasma membrane – lipid rafts and fatty acid transport proteins / R.Ehehalt [et al.]// Mol.Cell.Biochem. 2006. Vol.284, №1-2. P.135–140.

22. Insulin and fatty acids regulate the expression of the fat droplet-associated protein adipophilin in primary human trophoblasts/ U.Elchalal [et al.] // Am. J. Obstet. Gynecol. 2005. Vol.193, №5. P.1716–1723.

23. Gimeno R.E. Fatty acid transport proteins // Curr. Opin. Lipidol. 2007. Vol.18, №3. P.271–276.

24. Haggarty P. Effect of placental function on fatty acid requirements during pregnancy // Eur. J. Clin. Nutr. 2004. Vol.58, №12. P.1559–1570.

25. Effect of maternal polyunsaturated fatty acid concentration on transport by the human placenta / P.Haggarty [et al.] // Biol. Neonate. 1999. Vol.75, №6. P.350–359.

26. Long-chain polyunsaturated fatty acid transport across the perfused human placenta / P.Haggarty [et al.] // Placenta. 1997. Vol.18, №8. P.635–642.

27. Harizi H., Gualde N. The impact of eicosanoids on the crosstalk between innate and adaptive immunity: the key roles of dendritic cells // Tissue Antigens. 2005. Vol.65, №6. P.507–514.

28. Haunerland N.H., Spener F. Fatty acid-binding proteins – insights from genetic manipulations // Prog. Lipid Res. 2004. Vol.43, №4. P.328–349.

29. Herrera E. Implications of dietary fatty acids during pregnancy on placental, fetal and postnatal development: a review // Placenta. 2002. Vol.23, Suppl.A. P. S9–S19.

30. Fatty acid composition of umbilical arteries and veins: possible implication for the fetal EFA-status / G.Hornstra [et al.] // Lipids. 1989. Vol.24, №6. P.511–517.

31. Hui T.Y., Bernlohr D.A. Fatty acid transporters in animal cells // Front. Biosci. 1997. Vol.15, №2. P.222–231.

32. Ibrahimi A., Abumrad N.A. Role of CD36 in membrane transport of long-chain fatty acids // Curr. Opin. Clin. Nutr. Metab. Care. 2002. Vol.5, №2. P.139–145.

33. Innis S.M. Essential fatty-acids in growth and development // Prog. Lipid Res. 1991. Vol.30, №1. P.39–103.

34. Innis S.M. Essential fatty acid transfer and fetal development // Placenta. 2005. Vol.26, Suppl.A. P.70–75.

35. Kamp F., Hamilton J.A. How fatty acids of different chain length enter and leave cells by free diffusion // Prostaglandins Leukot. Essent. Fatty Acids. 2006. Vol.75, №3. P.149–159.

36. Kampf J.P., Cupp D., Kleinfeld A.M. Different mechanisms of free fatty acid flip-flop and dissociation revealed by temperature and molecular species dependence of transport across lipid vesicles // J. Biol. Chem. 2006. Vol.281, №30. P.21566–21574.

37. Eicosanoids in inflammation: biosynthesis, pharmacology, and therapeutic frontiers / S.P.Khanapure [et al.] // Curr. Top. Med. Chem. 2007. Vol.7, №3. P.311–340.

38. Klemens С.М., Salari K., Mozurkewich E. Assessing Omega-3 Fatty Acid Supplementation During Pregnancy and Lactation to Optimize Maternal Mental Health and Childhood Cognitive Development // Clin. Lipidology. 2012. Vol.7, №1. P.93–109.

39. Koletzko B., Larque E., Demmelmair H. Placental transfer of long-chain polyunsaturated fatty acids (LC-PUFA) // J. Perinat. Med. 2007. Vol.35, Suppl.1. P.5–11.

40. Kurzchalia T.V., Parton R.G. Membrane microdomains and caveolae // Curr. Opin. Cell Biol. 1999. Vol.11, №4. P.424–431.

41. Lager S. Cytokine and lipids in pregnancy – effects on developmental programming and placental nutrient transfer: Doctoral thesis. Gothenburg, Sweden, 2010. 68 p.

42. In vivo investigation of the placental transfer of (13)C-labeled fatty acids in humans / E.Larqué [et al.] // J. Lipid Res. 2003. Vol.44, №1. P.49–55.

43. Docosahexaenoic acid supply in pregnancy affects placental expression of fatty acid transport proteins / E.Larqué [et al.] // Am. J. Clin. Nutr. 2006. Vol.84, №4. P.853–861.

44. Leu B.H., Schmidt J.T. Arachidonic acid as a retrograde signal controlling growth and dynamics of retinotectal arbors // Dev. Neurobiol. 2008. Vol.68, Iss.1. P.18–30.

45. Placental triglyceride accumulation in maternal type 1 diabetes is associated with increased lipase gene expression / M.L.Lindegaard [et al.] // J. Lipid Res. 2006. Vol.47, №11. P.2581–2588.

46. Gestational and hormonal regulation of human placental lipoprotein lipase / A.L.Magnusson-Olsson [et al.] // J. Lipid Res. 2006. Vol.47, №11. P.2551–2561.

47. Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain / A.Mata de Urquiza [et al.] // Science. 2000. Vol.290, №5499. P.2140–2144.

48. Regulation of fatty acid transport protein and fatty acid translocase mRNA levels by endotoxin and cytokines / R.A.Memon [et al.] // Am. J. Physiol. 1998. Vol.274, №2(Pt.1). P.210–217.

49. Long-chain fatty acid uptake into adipocytes depends on lipid raft function / J.Pohl [et al.] // Biochemistry. 2004. Vol.43, №4. P.4179–4187.

50. FAT/CD36-mediated long-chain fatty acid uptake in adipocytes requires plasma membrane rafts / J.Pohl [et al.] // Mol. Biol. Cell. 2005. Vol.16, №1. P.24–31.

51. Rietveld A., Simons K. The differential miscibility of lipids as the basis for the formation of functional membrane rafts // Biochim. Biophys. Acta. 1998. Vol.1376, №3. P.467–479.

52. Peroxisome proliferator-activated receptor-gamma and retinoid X receptor signaling regulate fatty acid uptake by primary human placental trophoblasts / W.T.Schaiff [et al.] // J. Clin. Endocrinol. Metab. 2005. Vol.90, №7. P.4267–4275.

53. Schaffer J.E. Fatty acid transport: the roads taken // Am. J. Physiol. Endocrinol. Metab. 2002. Vol.282, №2. P.239–246.

54. Schaffer J.E., Lodish H.F. Expression cloning and characterization of a novel adipocyte long chain fatty acid transport protein // Cell. 1994. Vol.79, №3. P.427–436.

55. Fatty acid composition of serum lipids of mothers and their babies after normal and hypertensive pregnancies / Y.T.van der Schouw[et al.] // Prostaglandin Leukot. Essent. Fatty Acids. 1991. Vol.44, №4. P.247–252.

56. Human placenta metabolizes fatty acids: implications for fetal fatty acid oxidation disorders and maternal liver diseases / P.Shekhawat [et al.] // Am. J. Physiol. Endocrinol. Metab. 2003. Vol.284, №6. P.1098–1105.

57. Simons K., Ehehalt R. Cholesterol, lipid rafts, and disease // J. Clin. Invest. 2002. Vol.110, №5. P.597–603.

58. Smathers R.L., Petersen D.R. The human fatty acid-binding protein family: evolutionary divergences and functions // Hum. Genomics. 2011. Vol.5, №3. P.170–191.

59. Sprecher H. The roles of anabolic and catabolic reactions in the synthesis and recycling of polyunsaturated fatty acids // Prostaglandins Leukot. Essent. Fatty Acids. 2002. Vol.67, №2-3. P.79–83.

60. A new concept of cellular uptake and intracellular trafficking of long-chain fatty acids / W.Stremmel [et al.] // Lipids. 2001. Vol.36, №9. P.981–989.

61. Isolation and partial characterization of a fatty acid binding protein in rat liver plasma membranes / W.Stremmel [et al.] // Proc. Natl. Acad. Sci. USA. 1985. Vol.82, №1. P.4–8.

62. Thomas C.R., Lowy C. The interrelationships between circulating maternal esterified and non-esterified fatty acids in pregnant guinea pigs and their relative contributions to the fetal circulation // J. Dev. Physiol. 1987. Vol.9, №3. P.203–214.

63. Long-chain polyunsaturated fatty acid transport across human placental choriocarcinoma (BeWo) cells / К.A.Tobin [et al.] // Placenta. 2009. Vol.30, №1. P.41–47.

64. Trigatti B.L., Anderson R.G., Gerber G.E. Identification of caveolin-1 as a fatty acid binding protein // Biochem. Biophys. Res. Commun. 1999. Vol.255, №1. P.34–39.

65. Further characterization of a novel triacylglycerol hydrolase activity (pH 6.0 optimum) from microvillous membranes from human term placenta / I.J.Waterman [et al.] // Placenta. 2000. Vol.21, №8. P.813–823.

66. Endocytosis of oxidized low density lipoprotein through scavenger receptor CD36 utilizes a lipid raft pathway that does not require caveolin-1 / Y.Zeng [et al.] // J. Biol. Chem. 2003. Vol. 278, №46. P.45931–45936.


Review

For citations:


Dovzhikova I.V., Lutsenko M.T. MEMBRANE FATTY ACIDS TRANSPORT (REVIEW). Bulletin Physiology and Pathology of Respiration. 2013;(50):130-138. (In Russ.)

Views: 203


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-5029 (Print)