Preview

Bulletin Physiology and Pathology of Respiration

Advanced search

GABA and its role in the regulation of the airway tone

https://doi.org/10.36604/1998-5029-2020-76-97-106

Abstract

The literature describes the high prevalence of a combination of the upper and lower obstructive pathology of respiratory tract, the main of which are asthma, obstructive sleep apnea syndrome (OSAS) and chronic obstructive pulmonary disease (COPD). Thus, according to the results of a meta-analysis, the average prevalence of OSAS among AD patients is approaching 50%. The chance of the OSAS presence in patients with asthma is 2.64 95%CI (1.76; 3.52) times higher than in individuals who do not have asthma (p<0.001). A study in Europe showed that about 1% of the total population and 9.2% of patients with OSAS had COPD according to spirometry. Such a high prevalence of the combined course indicates the presence of a pathophysiological pairing of these pathologies, which has yet to be revealed. The most obvious common pathogenetic link of these disorders can be genetically caused disorders that occur at the receptor level. Several neuropeptide systems are known to control muscle tone of the respiratory tract, one of which is GABAergic. In this review, we described the prevalence of GABAergic transmission, its role in regulating the tone of the respiratory muscles, the localization and functional significance of GABA receptors, not only in the central nervous system, but also in the respiratory epithelium and smooth muscles of the respiratory tract. Thus, an imbalance in the neurotransmitter system can lead to the development of obstructive diseases of both the upper and lower respiratory tract. In addition, GABAergic receptors may be an obvious target for the treatment of obstructive airways diseases.

About the Authors

E. G. Sheludko
Far Eastern Scientific Center of Physiology and Pathology ofRespiration
Russian Federation

Elizaveta G. Sheludko - MD, PhD, Junior Staff Scientist, Laboratory of molecular and translational research.

22 Kalinina Str, Blagoveshchensk, 675000



D. E. Naumov
Far Eastern Scientific Center of Physiology and Pathology ofRespiration
Russian Federation

Denis E. Naumov - MD, PhD, Head of Laboratory of molecular and translational research.

22 Kalinina Str, Blagoveshchensk, 675000



References

1. Alexander S.P.H., Mathie A., Peters J.A. Ligand-Gated Ion Channels. Br J. Pharmacol. 2011; 164(Suppl.1):115-135. doi: m.nn/j.1476-538L201L01649_4.x

2. Purves D., Augustine G.J., Fitzpatrick D., Katz L.C., LaMantia A.S., McNamara J.O., Williams S.M., editors. Neuroscience. 2nd edition. Sunderland (MA): Sinauer Associates; 2001.

3. Awapara J., Landua A.J., Fuerst R., Seale B. Free gamma-aminobutyric acid in brain. J. Biol. Chem. 1950; 187(1):35-39.

4. Roberts. E., Frankel S., Harman PJ. Amino acids of nervous tissue. Proc. Soc. Exp. Biol. Med. 1950; 74(2):383-387.

5. Bazemore A., Elliott K.A., Florey E. Factor I and gamma-aminobutyric acid. Nature 1956; 178(4541): 1052-1053. doi: 10.1038/1781052a0

6. Bazemore A.W., Elliot K.A., Florey E. Isolation of factor I. J. Neurochem. 1957; 1(4):334-339.

7. Kravitz E.A., Kuffler, S.W., Potter D.D. Gamma-aminobutyric acid and other blocking compounds in Crustacea. III. Their Relative Concentrations in Separated Motor and Inhibitory Axons. J. Neurophysiol. 1963; 26:739-751. doi: 10.1152/jn.1963.26.5.739

8. Otsuka M., Iversen, L.L., Hall Z.W., Kravitz E.A. Release of gamma-aminobutyric acid from inhibitory nerves of lobster. Proc. Natl. Acad. Sci. 1966; 56(4):1110-1115. doi: 10.1073/pnas.56.4.1110

9. Krnjevic K., Schwartz S. The action of gamma-aminobutyric acid on cortical neurones. Exp. Brain Res. 1967; 3(4):320-336. doi: 10.1523/JNEUROSCI.07-05-01503.1987

10. Hendry S.H., Schwark H.D., Jones E.G., Yan J. Numbers and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex. J. Neurosci. 1987; 7(5):1503-1519. doi: 10.1523/JNEUROSCI.07-05-01503.1987

11. Beaulieu C. Numerical data on neocortical neurons in adult rat, with special reference to the GABA population. Brain Res. 1993; 609(1-2):284-292. doi: 10.1016/0006-8993(93)90884-p

12. Dykes R.W., Landry P., Metherate R., Hicks T.P. Functional role of GABA in cat primary somatosensory cortex: shaping receptive fields of cortical neurons. J. Neurophysiol. 1984; 52(6):1066-1093. doi:10.1152/jn.1984.52.6.1066

13. Bolz J., Gilbert C.D. Generation of end-inhibition in the visual cortex via interlaminar connections. Nature 1986; 320(6060):362-365. doi:10.1038/320362a0

14. Connors B.W., Malenka R.C., Silva L.R. Two inhibitory postsynaptic potentials, and GABAA and GABAB receptor-mediated responses in neocortex of rat and cat. J. Physiol. 1988; 406:443-468. doi: 10.1113/jphysiol.1988.sp017390

15. Bernard C., Cossart R., Hirsch J.C., Esclapez M., Ben-Ari Y. What is GABAergic inhibition? How is it modified in epilepsy? Epilepsia 2000; 41(6):90-95. doi: 10.1111/j.1528-1157.2000.tb01564.x

16. Tepper J. M., Abercrombie E.D., Bolam J.P. Basal ganglia macrocircuits. Prog. Brain Res. 2007; 160:3-7. doi: 10.1016/S0079-6123(06)60001-0

17. Hoover J.E., Strick P.L. Multiple output channels in the basal ganglia. Science. 1993; 259(5096):819-821. doi: 10.1126/science.7679223

18. Sommer M.A. The role of the thalamus in motor control. Curr. Opin. Neurobiol. 2003; 13(6):663-670. doi: 10.1016/j.conb.2003.10.014

19. Hikosaka O. GABAergic output of the basal ganglia. Prog. Brain Res. 2007; 160:209-226. doi: 10.1016/S0079-6123(06)60012-5

20. Siegel G.J., Agranoff B.W., Albers R.W. editors. Basic Neurochemistry: Molecular, Cellular and Medical Aspects. 6th edition. Philadelphia: Lippincott-Raven; 1999.

21. Kaufman D.L., Houser C.R., Tobin A.J. Two forms of the gamma-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions. J. Neurochem. 1991; 56(2):720-723. doi: 10.1111/j.1471-4159.1991.tb08211.x

22. Kanaani J., Lissin D., Kash S. F., Baekkeskov S. The Hydrophilic Isoform of Glutamate Decarboxylase, GAD67, Is Targeted to Membranes and Nerve Terminals Independent of Dimerization With the Hydrophobic Membrane-Anchored Isoform, GAD65. J. Biol. Chem. 1999; 274(52):37200-37209. doi:10.1074/jbc.274.52.37200

23. Fykse E.M., Fonnum F. Uptake of gamma-aminobutyric acid by a synaptic vesicle fraction isolated from rat brain. J. Neurochem. 1988; 50(4):1237-1242. doi: 10.1111/j.1471-4159.1988.tb10599.

24. Kish P.E., Fischer-Bovenkerk C., Ueda T. Active transport of gamma-aminobutyric acid and glycine into synaptic vesicles. Proc. Natl. Acad. Sci. USA 1989; 86(10):3877-3881. doi: 10.1073/pnas.86.10.3877

25. Hell J.W., Maycox P.R., Jahn R. Energy dependence and functional reconstitution of the gamma-aminobutyric acid carrier from synaptic vesicles. J. Biol. Chem. 1990; 265(4):2111-2117.

26. Gasnier B. The loading of neurotransmitters into synaptic vesicles. Biochimie 2000; 82(4):327-337. doi: 10.1016/s0300-9084(00)00221-2

27. Aubrey K.R. Presynaptic control of inhibitory neurotransmitter content in VIAAT containing synaptic vesicles. Neurochem. Int. 2016; 98:94-102. doi: 10.1016/j.neuint.2016.06.002

28. Lodish H., Berk A., Zipursky S.L., editors. Molecular Cell Biology. 4th edition. New York: W.H.Freeman; 2000.

29. Jin Xiao-Tao, Galvan A., Wichmann T., Smith Y Localization and Function of GABA Transporters GAT-1 and GAT-3 in the Basal Ganglia. Syst. Neurosci. 2011; 5:63. doi: 10.3389/fnsys.2011.00063

30. Besedovsky H.O., Rey A.D. Physiology of Psychoneuroimmunology: A Personal View. Brain. Behav. Immun. 2007; 21(1):34-44. doi: m.1016/j.bbi.2006.09.008

31. Melone M., Ciappelloni S., Conti F. Plasma membrane transporters GAT-1 and GAT-3 contribute to heterogeneity of GABAergic synapses in neocortex. Front. Neuroanat. 2014; 8:72. doi: 10.3389/fnana.2014.00072

32. Zhou Y., Danbolt N. GABA and Glutamate Transporters in Brain. Front. Endocrinol. 2013; 4:165. doi: 10.3389/fendo.2013.00165

33. Beenhakker M.P., Huguenard J.R. Astrocytes as Gatekeepers of GABAB Receptor Function. J. Neurosci. 2010; 30(45):15262-15276. doi: 10.1523/JNEUROSCI.3243-10.2010

34. Schousboe A., Waagepetersen H.S. GABA: homeostatic and pharmacological aspects. Prog. Brain Res. 2007; 160:9-19. doi: 10.1016/S0079-6123(06)60002-2

35. Osawa Y, Xu D., Sternberg D., Sonett J.R., D'Armiento J., Panettieri R.A., Emala C.W. Functional expression of the GABAB receptor in human airway smooth muscle. Am. J. Physiol. Lung Cell. Mol. Physiol. 2006; 291(5):L923-931. doi: 10.1152/ajplung.00185.2006/

36. White J.H., McIllhinney R.A., Wise A., Ciruela F., Chan W.Y, Emson P.C., Billinton A., Marshall F.H. The GABAB receptor interacts directly with the related transcription factors CREB2 and ATFx. Proc. Natl Acad. Sci. USA 2000; 97(25):13967-13972. doi: 10.1073/pnas.240452197

37. Bensmail D., Marquer A., Roche N., Godard A., Lofaso F., Quera-Salva M. Pilot study assessing the impact of intrathecal baclofen administration mode on sleep-related respiratory parameters. Arch. Phys. Med. Rehabil. 2012; 93(1):96-99. doi: 10.1016/j.apmr.2011.08.020

38. Ong J., Kerr D. GABA-receptors in peripheral tissues. Life Sci. 1990; 46(21):1489-1501. doi: 10.1016/0024-3205(90)90421-m

39. Chapman R.W., Hey J.A., Rizzo C.A., Bolser D.C. GABAB receptors in the lung. Trends Pharmacol. Sci. 1993; 14(1):26-29. doi:10.1016/0165-6147(93)90110-6

40. Perez Fontan J.J., Velloff C.R. Neuroanatomic organization of the parasympathetic bronchomotor system in developing sheep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1997; 273(1):121-133. doi:10.1152/ajpregu.1997.273.1.R121

41. Moore C.T., Wilson C.G., Mayer C.A., Acquah S.S., Massari V.J., Haxhiu M.A. A GABAergic inhibitory microcircuit controlling cholinergic outflow to the airways. J. Appl. Physiol. 2004; 96(1):260-270. doi: 10.1152/japplphy-siol.00523.2003

42. Akinci M.K., Schofield P.R. Widespread expression of GABA(A) receptor subunits in peripheral tissues. Neurosci. Res. 1999; 35(2):145-153. doi: 10.1016/s0168-0102(99)00078-4

43. Calver A.R., Medhurst A.D., Robbins M.J., Charles K.J., Evans M.L., Harrison D.C., Stammers M., Hughes S.A., Hervieu G., Couve A., Moss S.J., Middlemiss D.N., Pangalos M.N. The expression of GABA(B1) and GABA(B2) receptor subunits in the CNS differs from that in peripheral tissues. Neuroscience 2000; 100(1):155-170. doi: 10.1016/s0306-4522(00)00262-1

44. Kotlikoff M.I, Kamm K.E. Molecular Mechanisms of Beta-Adrenergic Relaxation of Airway Smooth Muscle. Annu. Rev. Physiol. 1996; 58:115-141. doi: 10.1146/annurev.ph.58.030196.000555

45. Chapman R.W., Danko G., Rizzo C., Egan R.W., Mauser P.J., Kreutner W. Prejunctional. GABA-B inhibition of cholinergic, neurallymediated airway contractions in guinea-pigs. Pulm. Pharmacol. 1991; 4(4):218-224. doi: 10.1016/0952-0600(91)90014-T

46. Tohda Y, Ohkawa K., Kubo H., Muraki M., Fukuoka M., Nakajima S. Role of GABA receptors in the bronchial response: studies in sensitized guinea-pigs. Clin. Exp. Allergy 1988; 28(6):772-777. doi:10.1046/j.1365-2222.1998.00289.x

47. Dicpinigaitis P.V Effect of the GABA-agonist baclofen on bronchial responsiveness in asthmatics. Pulm. Pharmacol. Ther. 1999; 12(4):257-260. doi: 10.1006/pupt.1999.0205

48. Billington C.K., Hall I.P., Mundell S.J., Parent J.L., Panettieri R.A.Jr., Benovic J.L., Penn R.B. Inflammatory and contractile agents sensitize specific adenylyl cyclase isoforms in human airway smooth muscle. Am. J. Respir. Cell Mol. Biol. 1999; 21(5):597- 606. doi: 10.1165/ajrcmb.21.5.3759

49. Osawa Y, Xu D., Sternberg D., Sonett J.R., D'Armiento J., Panettieri R.A., Emala C.W. Functional expression of the GABAB receptor in human airway smooth muscle. Am. J. Physiol. Lung Cell. Mol. Physiol. 2006; 291(5):923-931. doi: 10.1152/ajplung.00185.2006

50. Xiang Y.Y, Wang, S., Liu M., Hirota, J.A., Li J., Ju, W., Lu, W.-Y. A GABAergic system in airway epithelium is essential for mucus overproduction in asthma. Nat. Med. 2007; 13(7):862-867. doi: 10.1038/nm1604

51. Olianas M.C., Onali P. GABA(B) Receptor-Mediated Stimulation of Adenylyl Cyclase Activity in Membranes of Rat Olfactory Bulb. Br. J. Pharmacol. 1999; 126(3):657-664. doi: 10.1038/sj.bjp.0702349


Review

For citations:


Sheludko E.G., Naumov D.E. GABA and its role in the regulation of the airway tone. Bulletin Physiology and Pathology of Respiration. 2020;(76):97-106. (In Russ.) https://doi.org/10.36604/1998-5029-2020-76-97-106

Views: 2165


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-5029 (Print)