Neurogenic dysfunction of the respiratory system in traumatic brain injury
https://doi.org/10.36604/1998-5029-2020-76-118-125
Abstract
The development of respiratory distress in traumatic brain injury (TBI) is associated with the occurrence of non-cardiogenic, neurogenic pulmonary edema (NPE) and neuroinflammation. According to modern concepts, there are several theories for the development of NPE: due to neuro-cardiac or neurohemodynamic edema; “blast theory”; due to adrenergic hypersensitivity of the pulmonary venule; theory of “double strike”. The latter is based on the assertion that pulmonary injury in TBI occurs in response to a systemic inflammatory reaction when mediators of this process produced by glial tissue appear. It has been shown that with TBI, a neuro-inflammatory response develops, which contributes to the formation of acute respiratory distress syndrome. TBI causes a neuro-inflammatory response, which contributes to the formation of acute respiratory distress syndrome. The inflammation after TBI is caused by the production and activation of complement, cytokines, adhesion molecules, and other multifunctional peptides. Along with this neuroinflammatory activity is initiated by microglia and astrocytes; therefore, cells of the central nervous system are a powerful source of inflammatory mediators in TBI. It has also been demonstrated that the development of acute lung injury after TBI is associated with the expression of a systemic inflammatory response and NPE, pneumonia, etc. In the lung tissue, the initiation of the functional activity of innate immunity cells is observed against the background of massive sequestration by interstitial neutrophils, which then migrate to the alveoli. At the moment, there is a need to study the role of various molecular mediators, including endothelin-1 in the development of respiratory system pathology due to TBI.
About the Authors
S. V. ZinovievRussian Federation
Sergey V. Zinoviev - PhD (Med.), Senior Staff Scientist, Central Research Laboratory.
2 Ostryakova Ave., Vladivostok, 690002
N. G. Plekhova
Russian Federation
Natalia G. Plekhova - PhD, D.Sc. (Biol.), Head of the Central Research Laboratory.
2 Ostryakova Ave., Vladivostok, 690002
I. V. Radkov
Russian Federation
Ivan V. Radkov - Postgraduate student, Central Research Laboratory.
2 Ostryakova Ave., Vladivostok, 690002
V. B. Shumatov
Russian Federation
Valentin B. Shumatov - MD, PhD, D.Sc. (Med.), Professor, Rector.
2 Ostryakova Ave., Vladivostok, 690002
References
1. Hu PJ., Pittet J.F., Kerby J.D., Bosarge P.L., Wagener B.M. Acute brain trauma, lung injury, and pneumonia: more than just altered mental status and decreased airway protection. Am. J. Physiol. Lung Cell. Mol. Physiol. 2017; 313(1):L1-L15. doi: 10.1152/ajplung.00485.2016
2. Gundappa P. Extracranial Complications of Traumatic Brain Injury: Pathophysiology - A Review. J. Neuroanaes-thesiol. Crit. Care 2019; 6(3):200-212. doi: 10.1055/s-0039-1692883
3. Rajagopal R., Ganesh S., Vetrivel M. Neurogenic Pulmonary Edema in Traumatic Brain Injury. Indian J. Crit. Care Med. 2017; 21(5):329-331. doi: 10.4103/ijccm.IJCCM_431_16
4. Guo T., Zhang Y, Li Z., Zhao J., Feng N. Microneedle-mediated transdermal delivery of nanostructured lipid carriers for alkaloids from Aconitum sinomontanum. Artif. Cells Nanomed. Biotechnol. 2018; 46(8): 1541-1551. https://doi.org/10.1080/21691401.2017.1376676
5. Finsterer J. Neurological Perspectives of Neurogenic Pulmonary Edema. Eur. Neurol. 2019, 81(1-2):94-102. doi: 10.1159/000500139
6. Dai Q., Su L. Neurogenic pulmonary edema caused by spontaneous cerebellar hemorrhage: a fatal case report. Surg. Neurol. Int. 2014; 5:103. doi: 10.4103/2152-7806.135579
7. Aneja A., Arora N., Sanjeev R., Semalti K. Neurogenic Pulmonary Edema Following Status Epilepticus: An Unusual Case. Int. J. Clin. Pediatr. 2015; 4(4):186-188. doi: http://dx.doi.org/10.14740/ijcp230w
8. O'Leary R., McKinlay J. Neurological Perspectives of Neurogenic Pulmonary Edema. Contin. Educ. Anaesth. Crit. Care Pain. 2011; 11(3):87-92. https://doi.org/10.1093/bjaceaccp/mkr006
9. Tsubaki K., Inoue S., Kawaguchi M. A diagnostic dilemma in an alert patient with pulmonary oedema following craniotomy: A case report. Revista Colombiana de Anestesiología 2017; 45(Suppl.1):71-75. https://doi.org/10.1016/j.rca.2016.10.004
10. Cruza A.S., Menezesb S., Silvaa M. Neurogenic pulmonary edema due to ventriculo-atrial shunt dysfunction: a case report. J. Rev. Bras. Anestesiol. 2016; 66(2):200-203. doi: 10.1016/j.bjane.2013.10.009
11. Busl K.M., Bleck T.P. Neurogenic Pulmonary Edema. Crit. Care Med. 2015; 43(8): 1710-1715. doi: 10.1097/CCM.0000000000001101
12. Davison D.L., Terek M., Chawla L.S. Neurogenic pulmonary edema. Crit. Care 2012; 16(2):212. doi: 10.1186/cc11226
13. Lin X., Xu Z., Wang P., Xu Y, Zhang G. Role of PiCCO monitoring for the integrated management of neurogenic pulmonary edema following traumatic brain injury: A case report and literature review. Exp. Ther. Med. 2016; 12(4):2341-2347. doi: 10.3892/etm.2016.3615
14. Ridenti F.A.S. Neurogenic pulmonary edema: a current literature review. Rev. Bras. Ter. Intensiva 2012; 24(1):91— 96.
15. Kerr N., Pablode J., Vaccari R., Dietrich W.D., Keanea R.W. Neural-respiratory inflammasome axis in traumatic brain injury. Exp. Neurol. 2020; 323:113080. https://doi.org/10.1016/j.expneurol.2019.113080
16. Romero Osorio O.M., Abaunza Camacho J.F., Sandoval Briceno D., Lasalvia P., Narino Gonzalez D. Postictal neurogenic pulmonary edema: Case report and brief literature review. Epilepsy Behav. Case Rep. 2018; 9:49-50. doi: 10.1016/j.ebcr.2017.09.003
17. Sedy J., Kunes J., Zicha J. Pathogenetic Mechanisms of Neurogenic Pulmonary Edema. J. Neurotrauma 2015; 32(15): 1135-1145. https://doi.org/10.1089/neu.2014.3609
18. Mrozek S., Constantin J.M., Geeraerts T. Brain-lung crosstalk: Implications for neurocritical care patients. World J. Crit. Care Med. 2015; 4(3):163-178. doi: 10.5492/wjccm.v4.i3.163
19. Humphries D.C., O’Neill S., Scholefield E., Dorward D.A., Mackinnon A. C., Rossi A.G., Haslett C., Andrews P.J.D., Rhodes J., Dhaliwal K. Cerebral Concussion Primes the Lungs for Subsequent Neutrophil-Mediated Injury. Crit. Care Med. 2018; 46(9):e937-e944. doi: 10.1097/CCM.0000000000003270
20. Dennis W., Simon M., McGeachy M., Bayir H., Clark R.S.B., Loane D.J., Kochanek P.M. Neuroinflammation in the evolution of secondary injury, repair, and chronic neurodegeneration after traumatic brain injury. Nat. Rev. Neurol. 2017; 13(3): 171-191. doi: 10.1038/nrneurol.2017.13
21. Frank M.G., Weber M.D., Watkins L.R., Maier S.F. Stress sounds the alarmin: the role of the danger-associated molecular pattern HMGB1 in stress-induced neuroinflammatory priming. Brain Behav. Immun. 2015; 48:1-7. doi: 10.1016/j.bbi.2015.03.010
22. Corps K.N., Roth T.L., McGavern D.B. Inflammation and neuroprotection in traumatic brain injury. JAMA Neurol. 2015; 72(3):355-362. doi: 10.1001/jamaneurol.2014.3558
23. Della Torre V., Badenes R., Corradi F., Racca F., Lavinio A., Matta B., Bilotta F., Robba C. Acute respiratory distress syndrome in traumatic brain injury: how do we manage it? J. Thorac. Dis. 2017; 9(12):5368-5381. doi: 10.21037/jtd.2017.11.03
24. Liao Y., Liu P., Guo F., Zhang Z.Y., Zhang Z. Oxidative burst of circulating neutrophils following traumatic brain injury in human. PLoS One 2013; 8(7):e68963. doi: 10.1371/journal.pone.0068963
25. Weaver L.C., Bao F., Dekaban G.A., Hryciw T., Shultz S.R., Cain D.P., Brown A. CD11d integrin blockade reduces the systemic inflammatory response syndrome after traumatic brain injury in rats. Exp. Neurol. 2015; 271:409-422. doi: 10.1016/j.expneurol.2015.07.003
26. Mortaz E., Zadian S.S., Shahir M., Folkerts G., Garssen J., Mumby S., Adcock I.M. Does Neutrophil Phenotype Predict the Survival of Trauma Patients? Front. Immunol. 2019; 10:2122. doi: 10.3389/fimmu.2019.02122
27. Weber D.J., Gracon A.S., Ripsch M.S., Fisher A.J., Cheon B.M., Pandya P.H., Vittal R., Capitano M.L., Kim Y., Allette Y.M., Riley A.A., McCarthy B.P., Territo P.R., Hutchins G.D., Broxmeyer H.E., Sandusky G.E., White FA3, Wilkes D.S. The HMGB1-RAGE axis mediates traumatic brain injury-induced pulmonary dysfunction in lung transplantation. Sci. Transl. Med. 2014: 6(252):252ra124. doi: 10.1126/scitranslmed.3009443
28. Matthay M.A., Ware L.B., Zimmerman G.A. The acute respiratory distress syndrome. J. Clin. Invest. 2012; 122(8):2731-2740. doi: 10.1172/JCI60331
29. Comellas A.P., Briva A. Role of endothelin-1 in acute lung injury. Transl. Res. 2009; 153(6):263-271. doi: 10.1016/j.trsl.2009.02.007
30. Dashwood M.R., Loesch A. Endothelin-1 as a neuropeptide: neurotransmitter or neurovascular effects. J. Cell Commun. Signal. 2010; 4(1):51-62. doi: 10.1007/s12079-009-0073-3
31. Shihoya W., Nishizawa T., Okuta A., Tani K., Dohmae N., Fujiyoshi Y., Nurekiet O. Activation mechanism of en-dothelin ETB receptor by endothelin-1. Nature 2016; 537(7620):363-368. doi: 10.1038/nature19319
32. Khodorova A., Montmayeur J.P., Strichartz G.J. Endothelin receptors and pain. J. Pain 2009; 10(1):4-28. doi: 10.1016/j.jpain.2008.09.009
33. Chatfield D.A., Brahmbhatt D.H., Sharp T., Perkes I.E., Outrim J.G., Menon D.K. Juguloarterial endothelin-1 gradients after severe traumatic brain injury. Neurocrit. Care 2011; 14(1):55-60. doi: 10.1007/s12028-010-9413-7
34. Tu Y.F., Lin C.H., Lee H.T., Yan J.J., Sze C.I., Chou Y.P., Huang C.C. Elevated cerebrospinal fluid endothelin 1 associated with neurogenic pulmonary edema in children with enterovirus 71 encephalitis. Int. J. Infect. Dis. 2015; 34:e105-e111. doi: 10.1016/j.ijid.2015.03.017
35. Poulat P., Couture R. Increased pulmonary vascular permeability and oedema induced by intrathecally injected en-dothelins in rats. Eur. J. Pharmacol. 1998; 344(2-3):251-259. doi: 10.1016/s0014-2999(97)01569-0
36. Duan G.X., Zhou K.S., Zhao C.X., Jing YL., Hu Y.Q. Function of endothelin-1 in neurogenic pulmonary edema. Zhongguo Ying Yong Sheng Li Xue Za Zhi 2004; 20(3):268-271.
37. Pan D.S., Feng S.-Z., Cao P., Li J.J. Endothelin B receptor promotes the proliferation and immune escape of malignant gliomas. Artif. Cells Nanomed. Biotechnol. 2018; 46(6): 230-1235. doi: 10.1080/21691401.2017.1366336
38. Dow C.A., Templeton D.L., Lincenberg G.M., Greiner J.J., Stauffer B.L., DeSouza C.A. Elevations in C-reactive protein and endothelin-1 system activity in humans. Life Sci. 2016; 159:66-70. doi: 10.1016/j.lfs.2015.12.030
39. Gonsalves C., Kalra VK .Endothelin-1-Induced Macrophage Inflammatory Protein-1p Expression in Monocytic Cells Involves Hypoxia-Inducible Factor-1a and AP-1 and is Negatively Regulated by microRNA-195. J. Immunol. 2010; 185(10):6253-6264. doi: 10.1007/s12079-009-0073-3
40. Zinoviev S.V., Plekhova N.G., Radkov I.V Features of the structure of the radix of the left lung with experimental compensated traumatic brain injury. In: Fundamental issues of experimental and clinical physiology of respiration: Proceedings of the XIV All-Russian School-Conference. Ul'yanovsk; 2019:77-80 (in Russian).
41. Chertok VM., Chertok A.G. Regulatory capacity of the brain capillaries. Pacific Medical Journal 2016; (2):72-80 (in Russian). https://doi.org/10.17238/1609-1175.2016.2.72
Review
For citations:
Zinoviev S.V., Plekhova N.G., Radkov I.V., Shumatov V.B. Neurogenic dysfunction of the respiratory system in traumatic brain injury. Bulletin Physiology and Pathology of Respiration. 2020;(76):118-125. (In Russ.) https://doi.org/10.36604/1998-5029-2020-76-118-125