Peculiarities of TRPV1, TRPV4, TRPM8 and TRPA1 expression in monocyte-derived macrophages from COPD patients
https://doi.org/10.36604/1998-5029-2020-78-31-39
Abstract
Aim. The aim of this study was to investigate the expression of TRPV1, TRPV4, TRPM8, and TRPA1 in monocyte-derived macrophages from COPD patients under stimulation with lipopolysaccharides (LPS) and interferon-gamma (IFNγ) or interleukin 4 (IL-4).
Materials and methods. Macrophages were differentiated in vitro in the presence of granulocyte-macrophage colony-stimulating factor from monocytes obtained from COPD patients. The concentration of cytokines was determined in the supernatant of the culture medium after stimulation by multiplex analysis. The expression of TRP genes in macrophages was evaluated at mRNA level by quantitative PCR with reverse transcription.
Results. The effect of LPS/IFNγ was accompanied by the production of both proinflammatory (IL-1β, IL6, IL-12p70, IP-10, TNFα) and some anti-inflammatory cytokines (IL-4, IL-10 and TGFβ1). IL-4 significantly increased the concentration of IL-17A. Stimulation of macrophages with LPS/IFNγ increased the expression of TRPA1 by 5.6 times (p = 0.01) but caused down-regulation of TRPV1 and TRPV4 by 8.5 (p = 0.007) and 3.2 (p = 0.03) times, respectively. IL4 did not exert any effect on the TRP gene expression.
Conclusions. The results obtained may indicate dysregulation of the immune response in patients with COPD, primarily due to a decrease of anti-inflammatory potential of macrophages. The observed LPS-induced changes in the expression of TRP channels apparently have a compensatory nature and are aimed at the limitation of the cellular inflammatory response.
About the Authors
I. Yu. SugayloRussian Federation
Ivana Yu. Sugaylo, Assistant Researcher, Laboratory of Molecular and Translational Research
22 Kalinina Str., Blagoveshchensk, 675000
O. O. Kotova
Russian Federation
Olesya O. Kotova, MD, Junior Staff Scientist, Laboratory of Molecular and Translational Research
22 Kalinina Str., Blagoveshchensk, 675000
D. A. Gassan
Russian Federation
Dina A. Gassan, MD, PhD (Med.), Staff Scientist, Laboratory of Molecular and Translational Research
22 Kalinina Str., Blagoveshchensk, 675000
D. E. Naumov
Russian Federation
Denis E. Naumov, MD, PhD (Med.), Head of Laboratory of Molecular and Translational Research
22 Kalinina Str., Blagoveshchensk, 675000
E. Yu. Afanas’eva
Russian Federation
Evgeniya Yu. Afanas’eva, MD, Junior Staff Scientist, Laboratory of Molecular and Translational Research
22 Kalinina Str., Blagoveshchensk, 675000
T. A. Maltseva
Russian Federation
Tatyana A. Maltseva, MD, PhD (Med.), Staff Scientist, Laboratory of Molecular and Translational Research
22 Kalinina Str., Blagoveshchensk, 675000
References
1. Mills C.D., Kincaid K., Alt J.M., Heilman M.J., Hill A.M. M-1/M-2 macrophages and the Th1/Th2 paradigm. J. Immunol. 2000; 164(12):6166–6173. doi: 10.4049/jimmunol.164.12.6166
2. Gao J., Scheenstra M.R., van Dijk A., Veldhuizen E.J.A., Haagsman H.P. A new and efficient culture method for porcine bone marrow-derived M1- and M2-polarized macrophages. Vet. Immunol. Immunopathol. 2018; 200:7–15. doi: 10.1016/j.vetimm.2018.04.002
3. Poltavets A.S., Vishnyakova P.A., Elchaninov A.V., Sukhikh G.T., Fatkhudinov T.K. Macrophage Modification Strategies for Efficient Cell Therapy. Cells 2020; 9(6):1535. doi: 10.3390/cells9061535
4. Rőszer T. Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms. Mediators Inflamm. 2015; 2015:816460. doi: 10.1155/2015/816460
5. Xue J., Schmidt S.V., Sander J., Draffehn A., Krebs W., Quester I., De Nardo D., Gohel T.D., Emde M., Schmidleithner L., Ganesan H., Nino-Castro A., Mallmann M.R., Labzin L., Theis H., Kraut M., Beyer M., Latz E., Freeman T.C., Ulas T., Schultze J.L. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 2014; 40(2):274–288. doi: 10.1016/j.immuni.2014.01.006
6. Yamasaki K., Eeden S.F.V. Lung Macrophage Phenotypes and Functional Responses: Role in the Pathogenesis of COPD. Int. J. Mol. Sci. 2018; 19(2):582. doi: 10.3390/ijms19020582
7. Yoshida T., Tuder R.M. Pathobiology of cigarette smoke-induced chronic obstructive pulmonary disease. Physiol. Rev. 2007; 87(3):1047–1082. doi: 10.1152/physrev.00048.2006
8. Richens T.R., Linderman D.J., Horstmann S.A., Lambert C., Xiao Y.Q., Keith R.L., Boé D.M., Morimoto K., Bowler R.P., Day B.J., Janssen W.J., Henson P.M., Vandivier R.W. Cigarette smoke impairs clearance of apoptotic cells through oxidant-dependent activation of RhoA. Am. J. Respir. Crit. Care Med. 2009; 179(11):1011–1021. doi: 10.1164/rccm.200807-1148OC
9. Sugaylo I.Yu., Naumov D.E. Modern concepts of the role of transient receptor potential channels in chronic obstructive pulmonary disease pathogenesis (review). Bûlleten' fiziologii i patologii dyhaniâ=Bulletin Physiology and Pathology of Respiration 2019; (74):119–130 (in Russian). https://doi.org/10.36604/1998-5029-2019-74-119-130
10. Li M., Li Q., Yang G., Kolosov V.P., Perelman J.M., Zhou X.D. Cold temperature induces mucin hypersecretion from normal human bronchial epithelial cells in vitro through a transient receptor potential melastatin 8 (TRPM8)-mediated mechanism. J. Allergy Clin. Immunol. 2011; 128(3):626–634.e1-5. doi: 10.1016/j.jaci.2011.04.032
11. Zhu G.; ICGN Investigators, Gulsvik A., Bakke P., Ghatta S., Anderson W., Lomas D.A., Silverman E.K., Pillai S.G. Association of TRPV4 gene polymorphisms with chronic obstructive pulmonary disease. Hum. Mol. Genet. 2009; 18(11): 2053–2062. doi: 10.1093/hmg/ddp111
12. Xiong M., Guo M., Huang D., Li J., Zhou Y. TRPV1 genetic polymorphisms and risk of COPD or COPD combined with PH in the Han Chinese population. Cell Cycle 2020; 19(22):3066–3073. doi: 10.1080/15384101.2020.1831246
13. Naumov D., Kotova O., Gassan D., Sheludko E., Afanaseva E., Maltseva T., Sugaylo I. Role of TRPM8 polymorphisms in predisposition to COPD development in smokers. Eur. Respir. J. 2020; 56(Suppl.64):1128. doi: 10.1183/13993003.congress-2020.1128
14. Naumov D., Gassan D., Kotova O., Afanaseva E., Sheludko E., Sugaylo I., Perelman J. Effect of TRPA1 and TRPM8 polymorphisms on lung function in COPD. Eur. Respir. J. 2020; 56(Suppl.64): 1129. doi: 10.1183/13993003.congress-2020.1129
15. da Silva C.O., Gicquel T., Daniel Y., Bártholo T., Vène E., Loyer P., Pôrto L.C., Lagente V., Victoni T. Alteration of immunophenotype of human macrophages and monocytes after exposure to cigarette smoke. Sci. Rep. 2020; 10(1):12796. doi: 10.1038/s41598-020-68753-1
16. Day A., Barnes P., Donnely L. COPD monocytes differentiate into pro-inflammatory macrophages regardless of environment. Eur. Respir. J. 2013; 42(Suppl.57):3873.
17. Soodaeva S., Postnikova L., Boldina M., Kubysheva N., Li T., Kilimanov I., Nikitina L. Serum IL-17 and IL-18 levels in asthma-COPD overlap syndrome patients. Eur. Respir. J. 2015; 46(Suppl.59): PA4886. doi: 10.1183/13993003.congress-2015.PA4886
18. Yanagisawa H., Hashimoto M., Minagawa S., Takasaka N., Ma R., Moermans C., Ito S., Araya J., Budelsky A., Goodsell A., Baron J.L., Nishimura S.L. Role of IL-17A in murine models of COPD airway disease. Am. J. Physiol. Lung Cell. Mol. Physiol. 2017; 312(1):L122–L130. doi: 10.1152/ajplung.00301.2016
19. Christenson S.A., van den Berge M., Faiz A., Inkamp K., Bhakta N., Bonser L.R., Zlock L.T., Barjaktarevic I.Z., Barr R.G., Bleecker E.R., Boucher R.C., Bowler R.P., Comellas A.P., Curtis J.L., Han M.K., Hansel N.N., Hiemstra P.S., Kaner R.J., Krishnanm J.A., Martinez F.J., O'Neal W.K., Paine R. 3rd, Timens W., Wells J.M., Spira A., Erle D.J., Woodruff P.G. An airway epithelial IL-17A response signature identifies a steroid-unresponsive COPD patient subgroup. J. Clin. Invest. 2019; 129(1):169–181. doi: 10.1172/JCI121087
20. Wei B., Sheng Li C. Changes in Th1/Th2-producing cytokines during acute exacerbation chronic obstructive pulmonary disease. J. Int. Med. Res. 2018; 46(9):3890–3902. doi: 10.1177/0300060518781642
21. Boonen B., Alpizar Y.A., Sanchez A., López-Requena A., Voets T., Talavera K. Differential effects of lipopolysaccharide on mouse sensory TRP channels. Cell Calcium 2018; 73:72–81. doi: 10.1016/j.ceca.2018.04.004
22. Nassini R., Pedretti P., Moretto N., Fusi C., Carnini C., Facchinetti F., Viscomi A.R., Pisano A.R., Stokesberry S., Brunmark C., Svitacheva N., McGarvey L., Patacchini R., Damholt A.B., Geppetti P., Materazzi S. Transient receptor potential ankyrin 1 channel localized to non-neuronal airway cells promotes non-neurogenic inflammation. PLoS One 2012; 7(8):e42454. doi: 10.1371/journal.pone.0042454
23. Wang Q., Chen K., Zhang F., Peng K., Wang Z., Yang D., Yang Y. TRPA1 regulates macrophages phenotype plasticity and atherosclerosis progression. Atherosclerosis 2020; 301:44–53. doi: 10.1016/j.atherosclerosis.2020.04.004
24. Ninomiya Y., Tanuma S.I., Tsukimoto M. Differences in the effects of four TRPV1 channel antagonists on lipopolysaccharide-induced cytokine production and COX-2 expression in murine macrophages. Biochem. Biophys. Res. Commun. 2017; 484(3):668–674. doi: 10.1016/j.bbrc.2017.01.173
25. Fernandes E.S., Liang L., Smillie S.J., Kaiser F., Purcell R., Rivett D.W., Alam S., Howat S., Collins H., Thompson S.J., Keeble J.E., Riffo-Vasquez Y., Bruce K.D., Brain S.D. TRPV1 deletion enhances local inflammation and accelerates the onset of systemic inflammatory response syndrome. J. Immunol. 2012; 188(11):5741–5751. doi: 10.4049/jimmunol.1102147
26. Hamanaka K., Jian M.Y., Townsley M.I., King J.A., Liedtke W., Weber D.S., Eyal F.G., Clapp M.M., Parker J.C. TRPV4 channels augment macrophage activation and ventilator-induced lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 2010; 299(3): L353–362. doi: 10.1152/ajplung.00315.2009
27. Scheraga R.G., Abraham S., Niese K.A., Southern B.D., Grove L.M., Hite R.D., McDonald C., Hamilton T.A., Olman M.A. TRPV4 Mechanosensitive Ion Channel Regulates Lipopolysaccharide-Stimulated Macrophage Phagocytosis. J. Immunol. 2016; 196(1):428–436. doi: 10.4049/jimmunol.1501688
Review
For citations:
Sugaylo I.Yu., Kotova O.O., Gassan D.A., Naumov D.E., Afanas’eva E.Yu., Maltseva T.A. Peculiarities of TRPV1, TRPV4, TRPM8 and TRPA1 expression in monocyte-derived macrophages from COPD patients. Bulletin Physiology and Pathology of Respiration. 2020;(78):31-39. (In Russ.) https://doi.org/10.36604/1998-5029-2020-78-31-39