Preview

Bulletin Physiology and Pathology of Respiration

Advanced search

Medium and long chain free fatty acid receptors in the pathophysiology of respiratory diseases

https://doi.org/10.36604/1998-5029-2021-80-115-128

Abstract

Chronic inflammatory diseases of the respiratory tract, including asthma and chronic obstructive pulmonary disease, are a global problem of our time due to the widespread prevalence and difficulty of controlling the course. The mechanism of chronic inflammation in the bronchopulmonary system is closely related to metabolic disorders of lipids and their derivatives. Lipids and their mediators play both a pro-inflammatory and anti-inflammatory role in chronic inflammatory bronchopulmonary pathology. In particular, free fatty acids (FFAs) perform important signaling and regu latory functions in the body, coordinating metabolic and immune relationships. The mechanism that potentially binds FFAs and inflammatory reactions involves the activation of their receptors (FFAR – free fatty acid receptor), which are expressed on the cells of the respiratory tract, as well as on nerve and immune cells. Currently, FFARs are considered attractive targets in the treatment of chronic bronchopulmonary pathology, since modulation of their activity through the use of alimentary polyunsaturated fatty acids (PUFA) can affect the activity and resolution of neuroimmune inflammation in the bronchopulmonary system. However, controversial issues regarding their effectiveness and dose standardization of PUFA continue to limit their widespread use. This review summarizes the literature data on the role of medium- and longchain FFAs in the body’s immunoregulation in normal conditions and in chronic bronchopulmonary pathology. Data on medium and long chain FFA receptors – FFAR1 and FFAR4, FFAR-mediated signaling pathways in the regulation of metabolism and immune responses are systematized. The perspective and complex issues of the use of fatty acids in the treatment of chronic bronchopulmonary pathology are discussed. 

About the Authors

O. Yu. Kytikova
Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration – Research Institute of Medical Climatology and Rehabilitative Treatment
Russian Federation

MD, PhD, DSc (Med.), Staff Scientist of Laboratory of Rehabilitative Treatment, 

73g Russkaya Str., Vladivostok, 690105



T. P. Novgorodtseva
Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration – Research Institute of Medical Climatology and Rehabilitative Treatment
Russian Federation

PhD, DSc (Biol.), Рrofessor, Deputy Director on Scientific Work, Main Staff Scientist of Laboratory of Biomedical Research, 

73g Russkaya Str., Vladivostok, 690105



Yu. K. Denisenko
Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration – Research Institute of Medical Climatology and Rehabilitative Treatment
Russian Federation

PhD, DSc (Biol.), Head of Laboratory of Biomedical Research, 

73g Russkaya Str., Vladivostok, 690105



M. V. Antonyuk
Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration – Research Institute of Medical Climatology and Rehabilitative Treatment
Russian Federation

MD, PhD, DSc (Med.), Рrofessor, Head of Laboratory of Rehabilitative Treatment, 

73g Russkaya Str., Vladivostok, 690105



T. A. Gvozdenko
Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration – Research Institute of Medical Climatology and Rehabilitative Treatment
Russian Federation

MD, PhD, DSc (Med.), Professor of RAS, Main Staff Scientist of Laboratory of Rehabilitative Treatment, Director of the Vladivostok Branch,

73g Russkaya Str., Vladivostok, 690105



References

1. Vogelmeier C.F., Román-Rodríguez M., Singh D., Han M.K., Rodríguez-Roisin R., Ferguson G.T. Goals of COPD treatment: Focus on symptoms and exacerbations // Respir. Med. 2020. Vol.166. Article number: 105938. doi: 10.1016/j.rmed.2020.105938

2. Beasley R., Braithwaite I., Semprini A., Kearns C., Weatherall M., Pavord I.D. Optimal Asthma Control: Time for a New Target // Am. J. Respir. Crit. Care Med. 2020. Vol.201, №12. Р.1480−1487. doi: 10.1164/rccm.201910-1934CI

3. Kytikova O.Yu., Novgorodtseva T.P., Antonyuk M.V., Gvozdenko T.A. The role of regulatory neuropeptides and neurotrophic factors in asthma pathophysiology // Russian Open Medical Journal. 2019. Vol.8. Article CID: e04014. doi: 10.15275/rusomj.2019.0402

4. Sreter K.B., Popovic-Grle S., Lampalo M., Konjevod M., Tudor L., Nikolac Perkovic M., Jukic I., Bingulac-Popovic J., Safic Stanic H., Markeljevic J., Pivac N., Svob Strac D. Plasma Brain-Derived Neurotrophic Factor (BDNF) Concentration and BDNF/TrkB Gene Polymorphisms in Croatian Adults with Asthma // J. Pers. Med. 2020. Vol.10, №4. Article number: 189. doi: 10.3390/jpm10040189

5. Kytikova O.Yu., Novgorodtseva T.P., Antonyuk M.V., Denisenko Y.K., Gvozdenko T.A. Molecular targets of fatty acid ethanolamides in asthma // Medicina. 2019. Vol.55, №4. Article number: 87. doi: 10.3390/medicina55040087

6. Kytikova O.Y., Novgorodtseva T.P., Denisenko Y.K., Antonyuk M.V., Gvozdenko T.A. Dysfunction of transient receptor potential ion channels as an important pathophysiological mechanism in asthma // Russian Open Medical Journal. 2020. Vol.9, №1. Article CID: e0102. doi: 10.15275/rusomj.2020.0102

7. Kytikova O.Y., Perelman J.M., Novgorodtseva T.P., Denisenko Y.K., Kolosov V.P., Antonyuk M.V., Gvozdenko Т.A. Peroxisome Proliferator-Activated Receptors as a Therapeutic Target in Asthma // PPAR Research. 2020. Article ID: 8906968. https://doi.org/10.1155/2020/8906968

8. Cai F., Jin S., Chen G. The Effect of Lipid Metabolism on CD4+ T Cells // Mediators Inflamm. 2021. Article ID: 6634532. doi: 10.1155/2021/6634532

9. Monga N., Sethi G.S., Kondepudi K.K., Naura A.S. Lipid mediators and asthma: Scope of therapeutics // Biochem. Pharmacol. 2020. Vol.179. Article number: 113925. doi: 10.1016/j.bcp.2020.113925

10. Markelić I., Hlapčić I., Rogić D., Rako I., Samaržija M., Popović-Grle S., Rumora L., Vukić Dugac A. Lipid profile and atherogenic indices in patients with stable chronic obstructive pulmonary disease // Nutr. Metab. Cardiovasc. Dis. 2021. Vol.31, №1. Р.153−161. doi: 10.1016/j.numecd.2020.07.039

11. Sobczak A.IS., Pitt S.J., Smith T.K., Ajjan R.A., Stewart A.J. Lipidomic profiling of plasma free fatty acids in type1 diabetes highlights specific changes in lipid metabolism // Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2021. Vol.1866, №1. Article number: 158823. doi: 10.1016/j.bbalip.2020.158823

12. Milligan G., Shimpukade B., Ulven T., Hudson B.D. Complex pharmacology of free fatty acid receptors // Chem. Rev. 2017. Vol.117, №1. Р.67–110. doi: 10.1021/acs.chemrev.6b00056

13. Congreve M., de Graaf C., Swain N.A., Tate C.G.. Impact of GPCR Structures on Drug Discovery // Cell. 2020. Vol.181, №1. Р.81−91. doi: 10.1016/j.cell.2020.03.003

14. Kimura I., Ichimura A., Ohue-Kitano R., Igarashi M. Free Fatty Acid Receptors in Health and Disease // Physiol. Rev. 2020. Vol.100, №1. Р.171−210. doi: 10.1152/physrev.00041.2018

15. Son S.E., Kim N.J., Im D.S.Development of Free Fatty Acid Receptor 4 (FFA4/GPR120) Agonists in Health Science // Biomol. Ther. (Seoul). 2021. Vol.29, №1. Р.22−30. doi: 10.4062/biomolther.2020.213

16. Bartoszek A., Moo E.V., Binienda A., Fabisiak A., Krajewska J.B., Mosińska P., Niewinna K., Tarasiuk A., Martemyanov K., Salaga M., Fichna J.. Free Fatty Acid Receptors as new potential therapeutic target in inflammatory bowel diseases // Pharmacol. Res. 2020. Vol.152. Article number: 104604. doi: 10.1016/j.phrs.2019.104604

17. Hara T. Ligands at Free Fatty Acid Receptor 1 (GPR40) // Handb Exp. Pharmacol. 2017. Vol.236. Р.1-16. doi: 10.1007/164_2016_59

18. Rani L., Grewal A.S., Sharma N., Singh S. Recent Updates on Free Fatty Acid Receptor 1 (GPR-40) Agonists for the Treatment of Type 2 Diabetes Mellitus // Mini Rev. Med. Chem. 2020. Vol.21, №4. Р.426−470. doi: 10.2174/1389557520666201023141326

19. Mizuta K., Matoba A., Shibata S., Masaki E., Charles W., Emala Sr. Obesity-induced asthma: Role of free fatty acid receptors // Jpn Dent. Sci. Rev. 2019. Vol.55, №1. Р.103–107. doi: 10.1016/j.jdsr.2019.07.002

20. Xu S., Schwab A., Karmacharya N., Cao G., Woo J., Kim N., An S.S., Panettieri R.A. Jr., Jude J.A. FFAR1 activation attenuates histamine-induced myosin light chain phosphorylation and cortical tension development in human airway smooth muscle cells // Respir. Res. 2020. Vol.21, №1. Article number: 317. doi: 10.1186/s12931-020-01584-w

21. Prihandoko R., Kaur D., Wiegman C.H., Alvarez-Curto E., Donovan C., Chachi L., Ulven T., Tyas M.R., Euston E., Dong Z., Alharbi A.G.M., Kim R.Y., Lowe J.G., Hansbro P.M., Chung K.F., Brightling C.E., Milligan G., Tobin A.B. Pathophysiological regulation of lung function by the free fatty acid receptor FFA4 // Sci. Transl. Med. 2020. Vol.12, №557. Article number: eaaw9009. doi: 10.1126/scitranslmed.aaw9009

22. Bhatt D.L., Budoff M.J., Mason R.P. A Revolution in Omega-3 Fatty Acid Research // J. Am. Coll. Cardiol. 2020. Vol.76, №18. Р.2098−2101. doi: 10.1016/j.jacc.2020.09.005

23. Lan M., Nguyen T., Gray S. Omega-3 Fatty Acid Supplements for the Prevention of Cardiovascular Disease // Sr Care Pharm. 2020. Vol.35, №7. Р.318−323. doi: 10.4140/TCP.n.2020.318

24. Qiu X., Xie X., Meesapyodsuk D. Molecular mechanisms for biosynthesis and assembly of nutritionally important very long chain polyunsaturated fatty acids in microorganisms // Prog. Lipid Res. 2020. Vol.79. Article number: 101047. doi: 10.1016/j.plipres.2020.101047

25. Zhang L., Hames K.C., Jensen M.D. Regulation of direct adipose tissue free fatty acid storage during mixed meal ingestion and high free fatty acid concentration conditions // Am. J. Physiol. Endocrinol. Metab. 2021. Vol.320, №2. Р.208−218. doi: 10.1152/ajpendo.00408.2020

26. Pujol J.B., Christinat N., Ratinaud Y., Savoia C., Mitchell S.E., Dioum E.H.M. Coordination of GPR40 and Ketogenesis Signaling by Medium Chain Fatty Acids Regulates Beta Cell Function // Nutrients. 2018. Vol.10, №4. Article number: 473. doi: 10.3390/nu10040473

27. Mizuta K., Sasaki H., Zhang Y., Matoba A., Emala C.W. Sr. The short-chain free fatty acid receptor FFAR3 is expressed and potentiates contraction in human airway smooth muscle // Am. J. Physiol. Lung Cell. Mol. Physiol. 2020. Vol.318, №6. Р.1248−1260. doi: 10.1152/ajplung.00357.2019

28. Teng D., Chen J., Li D., Wu Z., Li W., Tang Y., Liu G. Computational Insights into Molecular Activation and Positive Cooperative Mechanisms of FFAR1 Modulators // J. Chem. Inf. Model. 2020. Vol.60, №6. Р.3214−3230. doi: 10.1021/acs.jcim.0c00030

29. Atanasio S., Deganutti G., Reynolds CA .Addressing free fatty acid receptor 1 (FFAR1) activation using supervised molecular dynamics. J. Comput. Aided Mol. Des. 2020. Vol.34, №11. Р.1181−1193. doi: 10.1007/s10822-020-00338-6

30. Li Z., Zhou Z., Zhang L. Current status of GPR40/FFAR1 modulators in medicinal chemistry (2016-2019): a patent review // Expert Opin. Ther. Pat. 2020. Vol.30 №1. Р.27−38. doi: 10.1080/13543776.2020

31. Nagasawa T., Ishimaru K., Higashiyama S., Hama Y., Mitsutake S. Teadenol A in microbial fermented tea acts as a novel ligand on GPR120 to increase GLP-1 secretion // Food Funct. 2020. Vol.11, №12. Р.10534−10541. doi: 10.1039/d0fo02442b

32. Lee K.-P., Park S.-J., Kang S., Koh J.-M., Sato K., Chung H.-Y., Okajima F., Im D.-S., ω-3 polyunsaturated fatty acids accelerate airway repair by activating FFA4 in club cells // Am. J. Physiol. Lung Cell. Mol. Physiol. 2017. Vol.312, №6. Р.835–844. doi.org/10.1152/ajplung.00350.2016

33. Im D.S. GPR119 and GPR55 as Receptors for Fatty Acid Ethanolamides, Oleoylethanolamide and Palmitoylethanolamide // Int. J. Mol. Sci. 2021. Vol.22, №3. Article number: 1034. doi: 10.3390/ijms22031034

34. Li N.X., Brown S., Kowalski T., Wu M., Yang L., Dai G., Petrov A., Ding Y., Dlugo, T., Wood H.B. GPR119 agonism increases glucagon secretion during insulin-induced hypoglycemia. Diabetes. 2018. Vol.67, №7. Р.1401–1413. doi: 10.2337/db18-0031

35. Chen J., Sang Z., Li L., He L., Ma L. Discovery of 5-methyl-2-(4-((4-(methylsulfonyl)benzyl)oxy)phenyl)-4-(piperazin-1-yl)pyrimidine derivatives as novel GRP119 agonists for the treatment of diabetes and obesity // Mol. Divers. 2017. Vol.21, №3. Р.637−654. doi: 10.1007/s11030-017-9755-6

36. Chen L.H., Zhang Q., Xie X., Nan F.J.Modulation of the G-Protein-Coupled Receptor 84 (GPR84) by Agonists and Antagonists // J. Med. Chem. 2020. Vol.63, №24. Р.15399–15409. doi: 10.1021/acs.jmedchem.0c01378

37. Peters A., Rabe P., Krumbholz P., Kalwa H., Kraft R., Schöneberg T., Stäubert C. Natural biased signaling of hydroxycarboxylic acid receptor 3 and G protein-coupled receptor 84 // Cell Commun. Signal. 2020. Vol.18, №1. Article number: 31. doi: 10.1186/s12964-020-0516-2

38. Luscombe Vincent B., Lucy D., Bataille Carole J.R., Russell Angela J., Greaves David R. 20 Years an Orphan: Is GPR84 a Plausible Medium-Chain Fatty Acid-Sensing Receptor? // DNA and Cell Biology. 2020. Vol.39. №11. Р.1926– 1937. https://doi.org/10.1089/dna.2020.5846

39. Pillaiyar T., Köse M, Sylvester K., Weighardt H., Thimm D., Borges G., Förster I., von Kügelgen I/, Müller C.E. Diindolylmethane Derivatives: Potent Agonists of the Immunostimulatory Orphan G Protein-Coupled Receptor GPR84 // J. Med. Chem. 2017. Vol.60, №9. Р.3636–3655. doi: 10.1021/acs.jmedchem.6b01593

40. Labéguère F., Dupont S., Alvey L., Soulas F.. Discovery of 9-Cyclopropylethynyl-2-((S)-1-[1,4]dioxan-2-ylmethoxy)-6,7-dihydropyrimido[6,1-a]isoquinolin-4-one (GLPG1205), a Unique GPR84 Negative Allosteric Modulator Undergoing Evaluation in a Phase II Clinical Trial // J. Med. Chem. 2020. Vol.63, №22. Р.13526–13545. doi.org/10.1021/acs.jmedchem.0c00272

41. Lin-Hai Chen., Qing Zhang., Xin Xie., Fa-Jun Nan. Modulation of the G-Protein-Coupled Receptor 84 (GPR84) by Agonists and Antagonists // J. Med. Chem. 2020. Vol.63, №24. Р.15399–15409. https://doi.org/10.1021/acs.jmedchem.0c01378

42. Marsango S., Barki N., Jenkins L., Tobin A.B., Milligan G. Therapeutic validation of an orphan G protein‐coupled receptor: The case of GPR84 // Br. J. Pharmacol. 2020. Р.1–13. https://doi.org/10.1111/bph.15248

43. Denisenko Y.K., Kytikova O.Y., Novgorodtseva T.P., Antonyuk M.V., Gvozdenko T.A., Kantur T.A. Lipid-Induced Mechanisms of Metabolic Syndrome // J. Obes. 2020. Vol.2020. Article ID: 5762395. doi: 10.1155/2020/5762395

44. Matoba A., Matsuyama N., Shibata S., Masaki E., Emala C.W., Mizuta K. The free fatty acid receptor 1 promotes airway smooth muscle cell proliferation through MEK/ERK and PI3K/Akt signaling pathways // Am. J. Physiol. Lung Cell. Mol. Physiol. 2018. Vol.314, №3. Р.333–348. doi: 10.1152/ajplung.00129.2017

45. Alvarez-Curto E., Inoue A., Jenkins L., Raihan S. Z., Prihandoko R., Tobin A.B., Milligan G., Targeted elimination of G proteins and arrestins defines their specific contributions to both intensity and duration of G protein-coupled receptor signalling // J. Biol. Chem. 2016. Vol.291, №53. Р.27147–27159. doi.org/10.1074/jbc.M116.754887

46. Pærregaard S.I. FFAR4 (GPR120) Signaling is not required for anti-inflammatory and insulin-sensitizing effects of omega-3 fatty acids // Mediators Inflamm. 2016. Vol.2016. Article number: 1536047. doi: 10.1155/2016/1536047

47. Lv J., Yu Q., Lv J., Di C., Lin X., Su W., Wu M., Xia Z. Airway epithelial TSLP production of TLR2 drives type 2 immunity in allergic airway inflammation // Eur. J. Immunol. 2018. Vol.48, №11. Р.1838–1850. doi: 10.1002/eji.201847663

48. Zakeri A., Russo M. Dual Role of Toll-like Receptors in Human and Experimental Asthma Models // Front. Immunol. 2018. Vol.9. Article number: 1027. doi: 10.3389/fimmu.2018.01027

49. Choi H., Kim T. Polyunsaturated fatty acids, lung function, and health-related quality of life in patients with chronic obstructive pulmonary disease // Yeungnam Univ. J. Med. 2020. Vol.37, №3. Р.194–201. doi: 10.12701/yujm.2020.00052

50. Kim J.S., Steffen B.T., Podolanczuk A.J., Kawut S.M., Noth I., Raghu G., Michos E.D., Hoffman E.A., Axelsson G.T., Gudmundsson G., Gudnason V., Gudmundsson E.F., Murphy R.A., Dupuis J., Xu H., Vasan R.S., O'Connor G.T., Harris W.S., Hunninghake G.M., Barr R.G., Tsai M.Y., Lederer D.J. Associations of omega-3 Fatty Acids With Interstitial Lung Disease and Lung Imaging Abnormalities Among Adults // Am. J. Epidemiol. 2021. Vol.190, №1. Р.95–108. doi: 10.1093/aje/kwaa168

51. Abdo-Sultan M.K., Abd-El-Lateef R.S., Kamel F.Z. Efficacy of Omega-3 Fatty Acids Supplementation versus Sublingual Immunotherapy in Patients with Bronchial Asthma // Egypt. J. Immunol. 2019. Vol.26, №1. Р.79–89.

52. Lemoine S.CM., Brigham E.P., Woo H., Hanson C.K., McCormack M.C., Koch A. Omega-3 fatty acid intake and prevalent respiratory symptoms among U.S. adults with COPD // BMC Pulm. Med. 2019. Vol.19. Article number: 97. doi: 10.1186/s12890-019-0852-4

53. Fekete M., Szőllősi G., Németh A.N., Varga JT. [Clinical value of omega-3 polyunsaturated fatty acid supplementation in chronic obstructive pulmonary disease] // Orv. Hetil. 2021. Vol.162, №1. Р.23–30. doi: 10.1556/650.2021.31973

54. Fussbroich D., Colas R.A., Eickmeier O., Trischler J., Jerkic S.P., Zimmermann K., Göpel A., Schwenger T., Schaible A., Henrich D., Baer P., Zielen S., Dalli J., Beermann C., Schubert R.A. combination of LCPUFA ameliorates airway inflammation in asthmatic mice by promoting pro-resolving effects and reducing adverse effects of EPA // Mucosal Immunol. 2020. Vol.13, №3. Р.481–492. doi: 10.1038/s41385-019-0245-2

55. van Brakel L., Mensink R.P., Wesseling G., Plat J. Nutritional Interventions to Improve Asthma-Related Outcomes through Immunomodulation: A Systematic Review // Nutrients. 2020. Vol.12, №12. Article number: 3839. doi: 10.3390/nu12123839

56. Mochimaru T., Fukunaga K., Miyata J., Matsusaka M., Masaki K., Kabata H., Ueda S., Suzuki Y., Goto T., Urabe D., Inoue M., Isobe Y., Arita M., Betsuyaku T. 12-OH-17,18-Epoxyeicosatetraenoic acid alleviates eosinophilic airway inflammation in murine lungs // Allergy. 2018. Vol.73, №2. Р.369–378. doi: 10.1111/all.13297

57. Talaei M., Sdona E., Calder P.C., Jones L.R., Emmett P.M., Granell R., Bergström A., Melén E., Shaheen S.O. Intake of n-3 polyunsaturated fatty acids in childhood, FADS genotype, and incident asthma // Eur. Respir. J. 2021. Article number: 2003633. doi: 10.1183/13993003.03633-2020

58. El-Fayoumi S.H., Mahmoud A.A., Fahmy A., Ibrahim IAA.E. Effect of omega-3 fatty acids on glucose homeostasis: role of free fatty acid receptor 1 // Naunyn Schmiedebergs Arch. Pharmacol. 2020. Vol.393, №10. Р.1797–1808. doi: 10.1007/s00210-020-01883-5

59. Saini R.K., Keum Y.S. Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance. A review // Life Sci. 2018. Vol.203. Р.255–267. doi: 10.1016/j.lfs.2018.04.049

60. Shewale S.V. In vivo activation of leukocyte GPR120/FFAR4 by PUFAs has minimal impact on atherosclerosis in LDL receptor knockout mice // J. Lipid Res. 2017. Vol.58, №1. Р.236–246. doi: 10.1194/jlr.M072769

61. Houthuijzen J.M. Fatty acid 16:4(n-3) stimulates a GPR120-induced signaling cascade in splenic macrophages to promote chemotherapy resistance // FASEB J. 2017. Vol.31. Р.2195–2209. doi: 10.1096/fj.201601248R


Review

For citations:


Kytikova O.Yu., Novgorodtseva T.P., Denisenko Yu.K., Antonyuk M.V., Gvozdenko T.A. Medium and long chain free fatty acid receptors in the pathophysiology of respiratory diseases. Bulletin Physiology and Pathology of Respiration. 2021;(80):115-128. (In Russ.) https://doi.org/10.36604/1998-5029-2021-80-115-128

Views: 385


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-5029 (Print)