Preview

Bulletin Physiology and Pathology of Respiration

Advanced search

The effect of cyclic polychemotherapy on the morphofunctional state of the gonads

https://doi.org/10.36604/1998-5029-2021-80-138-149

Abstract

Aim. The analysis of scientific publications on the treatment of malignant neoplasms, the effect of antitumor therapy on the morphofunctional state of the gonads is carried out.

Results. Treatment of malignant neoplasms is often accompanied by side effects that directly depend on the patient’s age, type of cancer, treatment regimen and doses, which has put forward a new urgent problem – the state of health and quality of life during remission of cancer or after recovery from it. Thus, cytostatically induced testicular damage leads to reproductive dysfunction in men on the “pre-testicular” (central nervous system and the peripheral nervous system, pituitary gland), “testicular” (gonads), “post-testicular” (epididymis, etc. organs of the genitourinary system involved in spermogenesis) levels of the reproductive system, which is especially important against the background of a sharply declining fertility of the modern male population. Accordingly, understanding the regularities of the processes of reparative regeneration of damaged tissues is important for the development of rehabilitation programs, the preservation of reproductive function and quality of life in patients who have undergone cytostatic therapy, especially in young people.

Conclusion. The literature review covers epidemiological and experimental data on the effects of chemotherapy on spermatogenesis.

About the Authors

E. E. Abramkin
Amur State Medical Academy
Russian Federation

Postgraduate Student, Department of Pathology,

95 Gor'kogo Str., Blagoveshchensk, 675000



I. Yu. Makarov
Amur State Medical Academy
Russian Federation

MD, PhD, DSc (Med.), Professor, Head of Department of Pathology,

95 Gor'kogo Str., Blagoveshchensk, 675000



N. V. Menshchikova
Amur State Medical Academy
Russian Federation

MD, PhD, Associate Professor, Department of Pathology, 

95 Gor'kogo Str., Blagoveshchensk, 675000



References

1. National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation. Statistical Compilation. Available at: https://nmicr.ru/nauka/nashi-izdaniya/statisticheskiy-sbornik/ (in Russian).

2. Golivets T.P, Kovalenko B.S. Analysis of world and russian trends in cancer incidence in the twenty-first century. Research Result. Medicine and Pharmacy Series 2015; 1(4):125–131 (in Russian). doi: 10.18413/2313-8955-2015-1-4-125-131

3. Steliarova-Foucher E., Colombet M., Ries L.A.G., Moreno F., Dolya A., Bray F., Hesseling P., Shin H.Y., Stiller C.A. IICC-3 contributor’s International incidence of childhood cancer, 2001–2010: A population-based registry study. Lancet Oncol. 2017; 18(6):719–731. https://doi.org/10.1016/S1470-2045(17)30186-9

4. Heinrich A., DeFalco T. Essential roles of interstitial cells in testicular development and function. Andrology 2019; 8(4):903–914. https://doi.org/10.1111/andr.12703

5. Clermont Y. Kinetics of spermatogenesis in mammals: Seminiferous epithelium cycle and spermatogonial renewal. Physiol. Rev. 1972; 52(1):198–236. https://doi.org/10.1152/physrev.1972.52.1.198

6. Allen C.M., Lopes F., Mitchell R.T., Spears N. How does chemotherapy treatment damage the prepubertal testis? Reproduction 2018; 156(6):R209–R233. https://doi.org/10.1530/REP-18-0221

7. Stukenborg J.B., Jahnukainen K., Hutka M., Mitchell R.T. Cancer treatment in childhood and testicular function: The importance of the somatic environment. Endocr. Connect. 2018; 7(2):R69–R87. https://doi.org/10.1530/EC-17-0382

8. Chemes H.E. Infancy is not a quiescent period of testicular development. Int. J. Androl. 2001; 24(1):2–7. https://doi.org/10.1046/j.1365-2605.2001.00260.x

9. Bar-Shira Maymon B., Yogev L., Marks A., Hauser R., Botchan A., Yavetz H. Sertoli cell inactivation by cytotoxic damage to the human testis after cancer chemotherapy. Fertil. Steril. 2004; 81(5):1391–1394. https://doi.org/10.1016/j.fertnstert.2003.09.078

10. van Casteren N.J., van der Linden G.H., Hakvoort-Cammel F.G., Hählen K., Dohle G.R., van den Heuvel-Eibrink M.M. Effect of childhood cancer treatment on fertility markers in adult male long-term survivors. Pediatr. Blood Cancer 2009; 52(1):108–112. https://doi.org/10.1002/pbc.21780

11. Brämswig J.H., Heimes U., Heiermann E., Schlegel W., Nieschlag E., Schellong G. The effects of different cumulative doses of chemotherapy on testicular function. Results in 75 patients treated for Hodgkin’s disease during childhood or adolescence. Cancer 1990; 65(6):1298–1302. https://doi.org/10.1002/1097-0142(19900315)65:63.0.co;2-w

12. Aslani F., Sebastian T., Keidel M., Fröhlich S., Elsässer H.P., Schuppe H.C., Klug J., Mahavadi P., Fijak M., Bergmann M., Meinhardt A., Bhushan S. Resistance to apoptosis and autophagy leads to enhanced survival in Sertoli cells. Mol. Hum. Reprod. 2017; 23(6):370–380. https://doi.org/10.1093/molehr/gax022

13. Tremblay A.R., Delbes G. In vitro study of doxorubicin-induced oxidative stress in spermatogonia and immature Sertoli cells. Toxicol. Appl. Pharmacol. 2018; 348:32–42. https://doi.org/10.1016/j.taap.2018.04.014

14. Brilhante O., Okada F.K., Sasso-Cerri E., Stumpp T., Miraglia S.M. Late morfofunctional alterations of the Sertoli cell caused by doxorubicin administered to prepubertal rats. Reprod. Biol. Endocrinol. 2012; 10:79. https://doi.org/10.1186/1477-7827-10-79

15. Stumpp T., Freymüller E., Miraglia S.M. Sertoli cell function in albino rats treated with etoposide during prepubertal phase. Histochem. Cell. Biol. 2006; 126(3):353–361. https://doi:10.1017/S1431927608080318

16. Nurmio M., Toppari J., Kallio J., Hou M., Söder O., Jahnukainen K. Functional in vitro model to examine cancer therapy cytotoxicity in maturing rat testis. Reprod. Toxicol. 2009; 27(1):28–34. https://doi.org/10.1016/j.reprotox. 2008.10.004

17. Heikens J., Behrendt H., Adriaanse R., Berghout A. Irreversible gonadal damage in male survivors of pediatric Hodgkin’s disease. Cancer 1996; 78(9):2020–2024. https://doi.org/10.1002/(sici)1097-0142(19961101)78:93.0.co;2-y

18. Gerl A., Mühlbayer D., Hansmann G., Mraz W., Hiddemann W. The impact of chemotherapy on Leydig cell function in long-term survivors of germ cell tumors. Cancer 2001; 91(7):1297–1303. https://doi.org/10.1002/1097- 0142(20010401)91:73.0.co;2-z

19. Gerres L., Brämswig J.H., Schlegel W., Jürgens H., Schellong G. The effects of etoposide on testicular function in boys treated for Hodgkin’s disease. Cancer 1998; 83(19):2217–2222. https://doi.org/10.1002/(sici)1097-0142(19981115)83:103.0.co;2-j

20. Isaksson S., Bogefors K., Ståhl O., Eberhard J., Giwercman Y.L., Leijonhufvud I., Link K., Øra I., Romerius P., Bobjer J., Giwercman A. High risk of hypogonadism in young male cancer survivors. Clin. Endocrinol. (Oxf) 2018; 88(3):432–441. https://doi.org/10.1111/cen.13534

21. Freitas F.E.L., Cordeiro-Mori F., Sasso-Cerri E., Lucas S.R.R., Miraglia S.M. Alterations of spermatogenesis in etoposide-treated rats: A stereological study. Interciência 2002; 27(5), 227–235.

22. Beaud H., van Pelt A., Delbes G. Doxorubicin and vincristine affect undifferentiated rat spermatogonia. Reproduction 2017; 153(6):725–735. https://doi.org/10.1530/REP-17-0005

23. Liu M., Hales B.F., Robaire B. Effects of four chemotherapeutic agents, bleomycin, etoposide, cisplatin, and cyclophosphamide, on DNA damage and telomeres in a mouse spermatogonial cell line. Biol. Reprod. 2014; 90(4):Article number: 72. https://doi.org/10.1095/biolreprod.114.117754

24. Stumpp T., Sasso-Cerri E., Freymuller E., Miraglia S. Apoptosis and testicular alterations in albino rats treated with etoposide during the prepubertal phase. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 2004; 279(1)611–622. https://doi.org/10.1002/ar.a.20045

25. Vendramini V., Robaire B., Miraglia S.M. Amifostine-doxorubicin association causes long-term prepubertal spermatogonia DNA damage and early developmental arrest. Hum. Reprod. 2012. Vol.27, №8. Р.2457–2466. https://doi.org/10.1093/humrep/des159

26. Remenár E., Számel I., Budai B., Vincze B., Gaudi I., Gundy S., Kásler M. Increase of hypophyseal hormone levels in male head and neck cancer patients. Pathol. Oncol. Res. 2007; 13(4):341–344. https://doi.org/10.1007/BF02940314

27. Wallace E.M., Groome N.P., Riley S.C., Parker A.C., Wu F.C.W. Effects of Chemotherapy-Induced Testicular Damage on Inhibin, Gonadotropin, and Testosterone Secretion: A Prospective Longitudinal Study. J. Clin. Endocrinol. Metab. 1997; 82(9):3111–3115. https://doi.org/10.1210/jcem.82.9.4238

28. Cao Y., Wang X., Li S., Wang H., Yu L., Wang P. The Effects of l-Carnitine Against Cyclophosphamide-Induced Injuries in Mouse Testis. Basic Clin. Pharmacol. Toxicol. 2017; 120(2):152–158. https://doi.org/10.1111/bcpt.12679

29. Setchell B., Galil K. Limitations imposed by testicular blood flow on the function of Leydig cells in rats in vivo. Aust. J. Biol. Sci. 1983; 36(3):285–293. https://doi.org/10.1071/BI9830285

30. Mossadegh-Keller N., Sieweke M.H. Testicular macrophages: Guardians of fertility. Cell. Immunol. 2018; 330:120– 125. https://doi.org/10.1016/j.cellimm.2018.03.009

31. Green D.M., Liu W., Kutteh W.H., Ke R.W., Shelton K.C., Sklar C.A., Chemaitilly W., Pui C.H., Klosky J.L., Spunt S.L., Metzger M.L., Srivastava D., Ness K.K., Robison L.L., Hudson M.M. Cumulative alkylating agent exposure and semen parameters in adult survivors of childhood cancer: A report from the St Jude Lifetime Cohort Study. Lancet Oncol. 2014; 15(11):1215–1223. https://doi.org/10.1016/S1470-2045(14)70408-5

32. Romerius P., Ståhl O., Moëll C., Relander T., Cavallin-Ståhl E., Wiebe T., Giwercman Y.L., Giwercman A. High risk of azoospermia in men treated for childhood cancer. Int. J. Androl. 2011; 34(1):69–76. https://doi.org/10.1111/j.1365- 2605.2010.01058.x

33. Marcon L., Zhang X., Hales B.F., Robaire B., Nagano M.C. Effects of chemotherapeutic agents for testicular cancer on rat spermatogonial stem/progenitor cells. J. Androl. 2011; 32(4):432–443. https://doi.org/10.1111/and.12422

34. Romerius P., Ståhl O., Moëll C., Relander T., Cavallin-Ståhl E., Gustafsson H., Löfvander Thapper K., Jepson K., Spanò M., Wiebe T., Lundberg Giwercman Y., Giwercman A. Sperm DNA Integrity in Men Treated for Childhood Cancer. Clin. Cancer Res. 2010; 16(15):3843–3850. https://doi.org/10.1158/1078-0432.CCR-10-0140

35. Nayak G., Vadinkar A., Nair S., Kalthur S.G., D'Souza A.S., Shetty P.K., Mutalik S., Shetty M.M., Kalthur G., Adiga S.K. Sperm abnormalities induced by pre-pubertal exposure to cyclophosphamide are effectively mitigated by Moringa oleifera leaf extract. Andrologia. 2016. Vol.48, №2. Р.125–136. https://doi.org/10.1111/and.12422

36. Martinez G., Walschaerts M, Le Mitouard M., Borye R., Thomas C., Auger J., Berthaut I., Brugnon F., Daudin M., Moinard N., Ravel C., Saias J., Szerman E., Rives N., Hennebicq S., Bujan L. Impact of Hodgkin or non-Hodgkin lymphoma and their treatments on sperm aneuploidy: A prospective study by the French CECOS network. Fertil. Steril. 2017; 107(2):341–350. https://doi.org/10.1016/j.fertnstert.2016.10.001

37. O’Flaherty C.M., Chan P.T., Hales B.F., Robaire B. Sperm chromatin structure components are differentially repaired in cancer survivors. J. Androl. 2012; 33(4):629–636. https://doi.org/10.2164/jandrol.111.015388

38. Maselli J., Hales B.F., Robaire B. The Effects of Chemotherapy with Bleomycin, Etoposide, and Cis-Platinum (BEP) on Rat Sperm Chromatin Remodeling, Fecundity and Testicular Gene Expression in the Progeny. Biol. Reprod. 2013; 89(4):1–9. https://doi.org/10.1095/biolreprod.113.110759


Review

For citations:


Abramkin E.E., Makarov I.Yu., Menshchikova N.V. The effect of cyclic polychemotherapy on the morphofunctional state of the gonads. Bulletin Physiology and Pathology of Respiration. 2021;(80):138-149. (In Russ.) https://doi.org/10.36604/1998-5029-2021-80-138-149

Views: 206


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-5029 (Print)