Preview

Bulletin Physiology and Pathology of Respiration

Advanced search

Peculiarities of TRP channels expression and cytokine profile of sputum in patients with chronic obstructive pulmonary disease and progressive bronchial obstruction

https://doi.org/10.36604/1998-5029-2022-86-24-32

Abstract

Introduction. Chronic obstructive pulmonary disease (COPD) is a pathology accompanied by a pro­gressive and irreversible deterioration in airway patency. It is known that macrophages of the respiratory tract are actively involved in the reorganization of the extracellular matrix leading to the development of bronchial remodeling.

Aim. To assess the relationship between the progression rate of bronchial obstruction in COPD, the expression of TRP channels on alveolar macrophages, and the levels of inflammatory markers in the respiratory tract.

Materials and methods. The study enrolled 37 patients with COPD, including 23 people with a FEV1 deterioration >50 ml/year and 14 with FEV1 decline <50 ml/year. The expression of TRPV1, TRPV4, TRPA1, TRPM8 channels was determined on alveolar macrophages by flow cytometry. Analysis of cytokines was performed in sputum supernatant by multiplex assay on a flow cytometer.

Re­sults. It was found that in patients with progressive bronchial obstruction TRPV4 expression was significantly increased: 14.2 (10.8; 23.4)% vs. 8.6 (3.6; 15.4)% (p=0.03). In addition, in the general group of patients a highly significant inverse correlation was found between TRPV4 expression and the dynamics of FEV1 (p=-0.52, p<0.001). Patients with a decrease in FEV1 >50 ml/year were characterized by significantly elevated levels of IL-2, IL-4, IL-17A, IL-10, IL-12p70, CXCL10 and MCP-1. Additionally, we found that concentrations of several cytokines were directly correlated with TRPV4 expres­sion on macrophages: IL-4 (p=0.51, p=0.001), CXCL10 (p=0.59, p<0.001), MCP-1 (p=0.56, p<0.001), TGF-ei (p=0.42, p=0.009), IFN-y (p=0.37, p=0.02).

Conclusion. TRPV4 channels expressed on alveolar macrophages are involved in the inflammatory process and airway remodeling in COPD, which is manifested by their relationships with the level of certain cytokines production, as well as the rate of the progression of bronchial obstruction.

About the Authors

D. E. Naumov
Far Eastern Scientific Center of Physiology and Pathology of Respiration
Russian Federation

Denis E. Naumov, PhD (Med.), Head of Laboratory of Molecular and Translational Research

22 Kalinina Str., Blagoveshchensk, 675000



I. Yu. Sugaylo
Far Eastern Scientific Center of Physiology and Pathology of Respiration
Russian Federation

Ivana Yu. Sugaylo, Junior Staff Scientist, Laboratory of Molecular and Translational Research

22 Kalinina Str., Blagoveshchensk, 675000



D. A. Gassan
Far Eastern Scientific Center of Physiology and Pathology of Respiration
Russian Federation

Dina A. Gassan, PhD (Med.), Staff Scientist, Laboratory of Molecular and Translational Research

22 Kalinina Str., Blagoveshchensk, 675000



O. O. Kotova
Far Eastern Scientific Center of Physiology and Pathology of Respiration
Russian Federation

Olesya O. Kotova, PhD (Med.), Junior Staff Scientist, Laboratory of Mo­lecular and Translational Research

22 Kalinina Str., Blagoveshchensk, 675000



Ya. G. Gorchakova
Far Eastern Scientific Center of Physiology and Pathology of Respiration
Russian Federation

Yana G. Gorchakova, Research Laboratory Assistant, Laboratory of Mo­lecular and Translational Research

22 Kalinina Str., Blagoveshchensk, 675000



E. G. Sheludko
Far Eastern Scientific Center of Physiology and Pathology of Respiration
Russian Federation

Elizaveta G. Sheludko, PhD (Med.), Staff Scientist, Laboratory of Mo­lecular and Translational Research

22 Kalinina Str., Blagoveshchensk, 675000



References

1. Gutierrez Villegas C., Paz-Zulueta M., Herrero-Montes M., Paras-Bravo P., Madrazo Perez M. Cost analysis of chronic obstructive pulmonary disease (COPD): a systematic review // Health Econ. Rev. 2021. Vol.11, Iss.1. Article number: 31. https://doi.org/10.1186/s13561-021-00329-9

2. Tantucci C., Modina D. Lung function decline in COPD // Int. J. Chron. Obstruct. Pulmon. Dis. 2012. Vol.7. P.9599. https://doi.org/10.2147/COPD.S27480

3. Whittaker H.R., Pimenta J.M., Jarvis D., Kiddle S.J., Quint J.K. Characteristics Associated with Accelerated Lung Function Decline in a Primary Care Population with Chronic Obstructive Pulmonary Disease // Int. J. Chron. Obstruct. Pulmon. Dis. 2020. Vol.15. P.3079-3091. https://doi.org/10.2147/COPD.S278981

4. Halpin D.M.G., Decramer M., Celli B.R., Mueller A., Metzdorf N., Tashkin D.P. Effect of a single exacerbation on decline in lung function in COPD // Respir. Med. 2017. Vol.128. P.85-91. https://doi.Org/10.1016/j.rmed.2017.04.013

5. Leem A.Y., Park B., Kim Y.S., Chang J., Won S., Jung J.Y. Longitudinal decline in lung function: a community-based cohort study in Korea // Sci. Rep. 2019. Vol.9, Iss.1. Article number: 13614. doi: 10.1038/s41598-019-49598-9

6. Thomas E.T., Guppy M., Straus S.E., Bell K.J.L., Glasziou P. Rate of normal lung function decline in ageing adults: a systematic review of prospective cohort studies // BMJ Open. 2019. Vol.9, Iss.6. Article number: e028150. https://doi.org/10.1136/bmjopen-2018-028150

7. Rosso A., Egervall K., Elmstahl S. Annual decline rate in FEV1s in community-dwelling older adults diagnosed with mild to moderate COPD // NPJ Prim. Care Respir. Med. 2022. Vol.32, Iss.1. Article number: 30. https://doi.org/10.1038/s41533-022-00292-w

8. Celli B.R., Anderson J.A., Cowans N.J., Crim C., Hartley B.F., Martinez F.J., Morris A.N., Quasny H., Yates J., Vestbo J., Calverley P.M.A. Pharmacotherapy and Lung Function Decline in Patients with Chronic Obstructive Pulmonary Disease. A Systematic Review // Am. J. Respir. Crit. Care Med. 2021. Vol.203, Iss.6. P.689-698. https://doi.org/10.1164/rccm.202005-1854OC

9. Wu J., Zhao X., Xiao C., Xiong G., Ye X., Li L., Fang Y., Chen H., Yang W., Du X. The role of lung macrophages in chronic obstructive pulmonary disease // Respir. Med. 2022. Vol.205. Article number: 107035. doi: 10.1016/j.rmed.2022.107035

10. Naumov D.E., Sugaylo I.Yu., Kotova O.O., Gassan D.A., Gorchakova Y.G., Maltseva T.A. [Comparative characteristics of TRP channels expression levels on the macrophages of patients with chronic obstructive pulmonary disease]. Bulleten' fiziologii i patologii dyhania = Bulletin Physiology and Pathology of Respiration 2022; (85):37-46 (in Russian). https://doi.org/10.36604/1998-5029-2022-85-37-46

11. Nguyen T.N., Siddiqui G., Veldhuis N.A., Poole D.P. Diverse Roles of TRPV4 in Macrophages: A Need for Unbiased Profiling // Front. Immunol. 2022. Vol.12. Article number: 828115. doi: 10.3389/fimmu.2021.828115

12. Sridharan R., Cavanagh B., Cameron A.R., Kelly D.J., O'Brien F.J. Material stiffness influences the polarization state, function and migration mode of macrophages // Acta Biomater. 2019. Vol.89. P.47-59. https://doi.org/10.1016/j.act-bio.2019.02.048

13. Chen M., Zhang Y., Zhou P., Liu X., Zhao H., Zhou X., Gu Q., Li B., Zhu X., Shi Q. Substrate stiffness modulates bone marrow-derived macrophage polarization through NF-KB signaling pathway // Bioact. Mater. 2020. Vol.5, Iss.4. P.880-890. https://doi.org/10.1016/j.bioactmat.2020.05.004

14. Ji C., McCulloch C.A. TRPV4 integrates matrix mechanosensing with Ca2+ signaling to regulate extracellular matrix remodeling // FEBS J. 2021. Vol.288, Iss.20. P.5867-5887. https://doi.org/10.1111/febs.15665

15. Sharma S., Goswami R., Zhang D.X., Rahaman S.O. TRPV4 regulates matrix stiffness and TGFe1-induced epithelial-mesenchymal transition // J. Cell. Mol. Med. 2019. Vol.23, Iss.2. P.761-774. https://doi.org/10.1111/jcmm.13972

16. Goswami R., Merth M., Sharma S., Alharbi M.O., Aranda-Espinoza H., Zhu X., Rahaman S.O. TRPV4 calcium- permeable channel is a novel regulator of oxidized LDL-induced macrophage foam cell formation // Free Radic. Biol. Med. 2017. Vol.110. P.142-150. https://doi.org/10.1016/j.freeradbiomed.2017.06.004

17. Burgess J.K., Harmsen M.C. Chronic lung diseases: entangled in extracellular matrix // Eur. Respir. Rev. 2022. Vol.31, Iss.163. Article number: 210202. https://doi.org/10.1183/16000617.0202-2021

18. Barnes P.J. The cytokine network in chronic obstructive pulmonary disease // Am. J. Respir. Cell. Mol. Biol. 2009. Vol.41, Iss.6. P.631-638. https://doi.org/10.1165/rcmb.2009-0220TR

19. Wei B., Sheng Li C. Changes in Th1/Th2-producing cytokines during acute exacerbation chronic obstructive pulmonary disease // J. Int. Med. Res. 2018. Vol.46, Iss.9. P.3890-3902. https://doi.org/10.1177/0300060518781642

20. Liu M., Wu K., Lin J., Xie Q., Liu Y., Huang Y., Zeng J., Yang Z., Wang Y., Dong S., Deng W., Yang M., Wu S., Jiang W., Li X. Emerging Biological Functions of IL-17A: A New Target in Chronic Obstructive Pulmonary Disease? // Front. Pharmacol. 2021. Vol.12. Article number: 695957. https://doi.org/10.3389/fphar.2021.695957

21. Ji X., Li J., Xu L., Wang W., Luo M., Luo S., Ma L., Li K., Gong S., He L., Zhang Z., Yang P., Zhou Z., Xiang X., Wang C.Y. IL4 and IL-17A provide a Th2/Th17-polarized inflammatory milieu in favor of TGF-e1 to induce bronchial epithelial-mesenchymal transition (EMT) // Int. J. Clin. Exp. Pathol. 2013. Vol.6, Iss.8. P.1481-1492. PMID: 23923066; PMCID: PMC3726963.

22. Su X., Wu W., Zhu Z., Lin X., Zeng Y. The effects of epithelial-mesenchymal transitions in COPD induced by cigarette smoke: an update // Respir. Res. 2022. Vol.23, Iss.1. Article number: 225. https://doi.org/10.1186/s12931-022-02153-z

23. Jing H., Liu L., Zhou J., Yao H. Inhibition of C-X-C Motif Chemokine 10 (CXCL10) Protects Mice from Cigarette Smoke-Induced Chronic Obstructive Pulmonary Disease // Med. Sci. Monit. 2018. Vol.24. P.5748-5753. https://doi.org/10.12659/MSM.909864

24. Di Stefano A., Coccini T., Roda E., Signorini C., Balbi B., Brunetti G., Ceriana P. Blood MCP-1 levels are increased in chronic obstructive pulmonary disease patients with prevalent emphysema // Int. J. Chron. Obstruct. Pulmon. Dis. 2018. Vol.13. P.1691-1700. https://doi.org/10.2147/COPD.S159915


Review

For citations:


Naumov D.E., Sugaylo I.Yu., Gassan D.A., Kotova O.O., Gorchakova Ya.G., Sheludko E.G. Peculiarities of TRP channels expression and cytokine profile of sputum in patients with chronic obstructive pulmonary disease and progressive bronchial obstruction. Bulletin Physiology and Pathology of Respiration. 2022;(86):24-32. (In Russ.) https://doi.org/10.36604/1998-5029-2022-86-24-32

Views: 171


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-5029 (Print)