Preview

Bulletin Physiology and Pathology of Respiration

Advanced search

Prospects for the pharmacological application of N-acyle-thanolamines of polyunsaturated fatty acids in the therapy of respiratory diseases on the example of bronchial asthma

https://doi.org/10.36604/1998-5029-2022-86-129-137

Abstract

Introduction. At present, the mechanisms of the processes of resolving chronic inflammation in asthma are not fully understood. A search for new pharmacological preparations and substances for the treatment and control of the course of asthma is required. Promising in this direction are N-acylethanolamines (NAE) of polyunsaturated fatty acids - bioactive lipid molecules that exhibit many signaling functions. NAEs are capable of influencing the synthesis of pro-inflammatory cytokines and are also appear to be a substrate for the synthesis of pro-permissive lipid signaling molecules. This review collects data on NAE, provides an overview, biosynthesis, and describes their anti-inflammatory effects.

Aim. Summarizing the data of domestic and foreign researchers on the possibility of NAE in the treatment of respiratory diseases on the example of bronchial asthma.

Materials and methods. The review uses data from articles published in PubMed, Google Scholar, eLIBRARY.

Results. The study and compilation of literature on this issue made it possible to conclude that synthetic NAEs are promising pharmacological objects for asthma therapy, however, further testing of the anti-in­flammatory effects of NAEs and the establishment of the molecular mechanism of their action on inflammation processes are needed.

About the Authors

I. S. Kovalenko
Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration - Research Institute of Medical Climatology and Rehabilitative Treatment
Russian Federation

Ivan S. Kovalenko, Postgraduate student, Laboratory of Biomedical Re­search

73g Russkaya Str., Vladivostok, 690105



Yu. К. Denisenko
Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration - Research Institute of Medical Climatology and Rehabilitative Treatment
Russian Federation

Yulia К. Denisenko, PhD, DSc (Biol.), Head of Laboratory of Biomedical Research

73g Russkaya Str., Vladivostok, 690105



T. P. Novgorodtseva
Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration - Research Institute of Medical Climatology and Rehabilitative Treatment
Russian Federation

Tatiana P. Novgorodtseva, PhD, DSc (Biol.), Professor, Deputy Director on Scientific Work, Main Staff Scientist of Laboratory of Biomedical Re­search

73g Russkaya Str., Vladivostok, 690105



N. V. Bocharova
Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration - Research Institute of Medical Climatology and Rehabilitative Treatment
Russian Federation

Natalia V. Bocharova, PhD (Biol.), Staff Scientist, Laboratory of Bio­medical Research

73g Russkaya Str., Vladivostok, 690105



U. M. Omatova
Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration - Research Institute of Medical Climatology and Rehabilitative Treatment
Russian Federation

Uliana M. Omatova, Junior Staff Scientist, Laboratory of Biomedical Research

73g Russkaya Str., Vladivostok, 690105



References

1. Chuchalin A.G., Avdeev S.N., Aisanov Z.R., Belevskiy A.S., Vasil'eva O.S., Geppe N.A., Ignatova G.L., Knyazheskaya N.P., Malakhov A.B., Meshcheryakova N.I., Nenasheva N.M., Fassakhov R.S., Khaitov R.M., Il'ina N.I., Kur- bacheva O.M., Astafieva N.G., Demko I.V., Fomina D.S., Namazova-Baranova L.S., Baranov A.A., Vishneva E.A., Novik G.A. [Federal guidelines on diagnosis and treatment of bronchial asthma]. Pulmonologiya 2022; 32(3):393-447 (in Russian). https://doi.org/10.18093/0869-0189-2022-32-3-393-447

2. Barnig C., Bezema T., Calder P.C., Charloux A., Frossard N., Garssen J., Haworth O., Dilevskaya K., Levi-Schaffer F., Lonsdorfer E., Wauben M., Kraneveld A.D., te Velde A.A. Activation of Resolution Pathways to Prevent and Fight Chronic Inflammation: Lessons From Asthma and Inflammatory Bowel Disease. Front Immunol. 2019; 10:1699. https://doi.org/10.3389/fimmu.2019.01699

3. Lecques J. D., Kerr B., Hillyer L. M., Kang J. X., Robinson L. E., Ma D.W. N-3 Polyunsaturated Fatty Acids Ameliorate Neurobehavioral Outcomes Post-Mild Traumatic Brain Injury in the Fat-1 Mouse Model. Nutrients 2021; 13(11):4092. https://doi.org/10.3390/nu13114092

4. Serhan C. N. Pro-resolving lipid mediators are leads for resolution physiology. Nature 2014; 510(7503):92-101. https://doi.org/10.1038/nature13479

5. Isobe Y., Arita M. Identification of novel omega-3 fatty acid-derived bioactive metabolites based on a targeted lipidomics approach. J. Clin. Biochem. Nutr. 2014; 55(2):79-84. https://doi.org/10.3164/jcbn.14-18

6. Saini R. K., Keum Y. S. Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance - A review. Life Sci. 2018; 203:255-267. https://doi.org/10.1016/j.lfs.2018.04.049

7. Blancaflor E.B., Kilaru A., Keereetaweep J., Khan B.R., Faure L., Chapman K.D. N-Acylethanolamines: lipid metabolites with functions in plant growth and development. Plant J. 2014; 79(4):568-583. https://doi.org/10.1111/tpj.12427

8. Tsuboi K., Uyama T., Okamoto Y., Ueda N. Endocannabinoids and related N-acylethanolamines: biological activities and metabolism. Inflamm. Regen. 2018; 38:28. https://doi.org/10.1186/s41232-018-0086-5

9. Hussain Z., Uyama T., Tsuboi K., Ueda N. Mammalian enzymes responsible for the biosynthesis of N-acylethanolamines. Biochim. Biophys. Acta. Mol. Cell Biol. Lipids 2017; 1862(12):1546-1561. https://doi.org/10.1016/j.bbalip.2017.08.006

10. Guo Y., Uyama T., Rahman S., Sikder M. M., Hussain Z., Tsuboi K., Miyake M., Ueda N. Involvement of the Y Isoform of cPLA2 in the Biosynthesis of Bioactive N-Acylethanolamines. Molecules 2021; 26(17):5213. https://doi.org/10.3390/molecules26175213

11. Tripathi R.K.P. A perspective review on fatty acid amide hydrolase (FAAH) inhibitors as potential therapeutic agents. Eur. J. Med. Chem. 2020; 188:111953. https://doi.org/10.1016/j.ejmech.2019.111953

12. McDougle D. R., Watson J. E., Abdeen A. A., Adili R., Caputo M. P., Krapf J. E., Johnson R. W., Kilian K. A., Holinstat M., Das A. Anti-inflammatory ro-3 endocannabinoid epoxides. Proc. Natl Acad. Sci. USA 2017; 114(30):E6034-E6043. https://doi.org/10.1073/pnas.1610325114

13. Levy J.M. Endogenous cannabinoids may regulate chronic inflammation in aspirin-exacerbated respiratory disease. World J. Otorhinolaryngol. Head Neck Surg. 2020; 6(4):255-257. https://doi.org/10.1016/j.wjorl.2020.07.004

14. Chanda D., Neumann D., Glatz J. F. C. The endocannabinoid system: Overview of an emerging multi-faceted therapeutic target. Prostaglandins Leukot. Essent. Fatty Acids 2019; 140:51-56. https://doi.org/10.1016/j.plefa.2018.11.016

15. Denisenko Yu.K., Bocharova N.V., Kovalenko I.S., Novgorodtseva T.P. [Influence of N-acyl-ethanolamine of arachidonic acid on the synthesis of cytokines and oxylipins by the blood leukocytes of patients with asthma under in vitro conditions]. Btilleten' fiziologii i patologii dyhania = Bulletin Physiology and Pathology of Respiration 2022; (83):15-21 (in Russian). https://doi.org/10.36604/1998-5029-2022-83-15-21

16. Pacher P., Kogan N.M., Mechoulam R. Beyond THC and Endocannabinoids. Annu. Rev. Pharmacol. Toxicol. 2020; 60:637-659. https://doi.org/10.1146/annurev-pharmtox-010818-021441

17. Balvers M. G., Verhoeckx K. C., Meijerink J., Bijlsma S., Rubingh C. M., Wortelboer H. M., Witkamp R. F. Timedependent effect of in vivo inflammation on eicosanoid and endocannabinoid levels in plasma, liver, ileum and adipose tissue in C57BL/6 mice fed a fish-oil diet. Int. Immunopharmacol. 2012; 13(2):204-214. https://doi.org/10.1016/j.intimp.2012.03.022

18. Balvers M.G., Verhoeckx K.C., Plastina P., Wortelboer H.M., Meijerink J., Witkamp R.F. Docosahexaenoic acid and eicosapentaenoic acid are converted by 3T3-L1 adipocytes to N-acyl ethanolamines with anti-inflammatory properties. Biochim. Biophys. Acta 2010; 1801(10):1107-1114. https://doi.org/10.1016/j.bbalip.2010.06.006

19. Meijerink J., Plastina P., Vincken J.P., Poland M., Attya M., Balvers M., Gruppen H., Gabriele B., Witkamp R.F. The ethanolamide metabolite of DHA, docosahexaenoylethanolamine, shows immunomodulating effects in mouse peritoneal and RAW264.7 macrophages: evidence for a new link between fish oil and inflammation. Br. J. Nutr. 2011; 105(12):1798-1807. https://doi.org/10.1017/S0007114510005635

20. Watson J.E., Kim J.S., Das A. Emerging class of omega-3 fatty acid endocannabinoids & their derivatives. Prostaglandins Other Lipid Mediat. 2019; 143:106337. https://doi.org/10.1016/j.prostaglandins.2019.106337

21. de Bus I., Zuilhof H., Witkamp R., Balvers M., Albada B. Novel COX-2 products of n-3 polyunsaturated fatty acid-ethanolamine-conjugates identified in RAW264.7 macrophages. J. Lipid Res. 2019; 60(11):1829-1840. https://doi.org/10.1194/jlr.M094235

22. Kim J., Carlson M.E., Watkins B.A. Docosahexaenoyl ethanolamide improves glucose uptake and alters endocannabinoid system gene expression in proliferating and differentiating C2C12 myoblasts. Front. Physiol. 2014; 5:100. https://doi.org/10.3389/fphys.2014.00100

23. Barnig C., Levy B.D. Innate immunity is a key factor for the resolution of inflammation in asthma. Eur. Respir. Rev. 2015; 24(135):141-153. https://doi.org/10.1183/09059180.00012514


Review

For citations:


Kovalenko I.S., Denisenko Yu.К., Novgorodtseva T.P., Bocharova N.V., Omatova U.M. Prospects for the pharmacological application of N-acyle-thanolamines of polyunsaturated fatty acids in the therapy of respiratory diseases on the example of bronchial asthma. Bulletin Physiology and Pathology of Respiration. 2022;(86):129-137. (In Russ.) https://doi.org/10.36604/1998-5029-2022-86-129-137

Views: 274


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-5029 (Print)