Роль респираторных инфекций в формировании гиперреактивности дыхательных путей у детей
https://doi.org/10.36604/1998-5029-2024-93-121-131
Аннотация
Гиперреактивность дыхательных путей (ГРДП) – гетерогенное и комплексное нарушение, при котором возникает чрезмерное сужение дыхательных путей в ответ на действие различных экзо- и эндогенных стимулов. В данной статье представлена информация за последние пять лет, включающая 50 публикаций представленных в PubMed и Google Scholar, о наиболее распространенных вирусах, провоцирующих развитие гиперреактивности дыхательных путей у детей, включая респираторно-синцитиальный вирус, риновирус, метапневмовирус, вирусы гриппа и парагриппа, коронавирус SARS-CoV-2, аденовирус и бокавирус. Описывается ряд патофизиологических механизмов, с помощью которых вирусы повреждают респираторный эпителий и приводят к формированию инфекционной и постинфекционной гиперчувствительности бронхов. Подчеркнута роль гиперэкспрессии цитокинов и медиаторов воспаления в развитии ГРДП, особенно в раннем возрасте. Показано, что воспалительный процесс и сбалансированный иммунный ответ имеют решающее значение для смягчения тяжести заболевания, вызванного вирусами. Понимание молекулярных механизмов воспалительных реакций и иммунного ответа на острые респираторные вирусные инфекции может помочь разработать более эффективные методы профилактики и лечения респираторных заболеваний у детей.
Об авторах
А. С. МанукянРоссия
Айкуш Славиковна Манукян, аспирант, младший научный сотрудник, лаборатория механизмов вирус-ассоциированных патологий развития
675000, г. Благовещенск, ул. Калинина, 22
А. Г. Приходько
Россия
Анна Григорьевна Приходько, д-р мед. наук, главный научный сотрудник, лаборатория функциональных методов исследования дыхательной системы
675000, г. Благовещенск, ул. Калинина, 22
Список литературы
1. Maatta A.M., Malmberg L.P., Pelkonen A.S., Makela M.J. The link between early childhood lower airway symptoms, airway hyperresponsiveness, and school-age lung function // Ann. Allergy Asthma Immunol. 2024. Vol.132, Iss.1. P.54–61.e5. https://doi.org/10.1016/j.anai.2023.10.006
2. Clementi N., Ghosh S., De Santis M., Castelli M., Criscuolo E., Zanoni I., Clementi M., Mancini N. Viral respiratory pathogens and lung injury // Clin. Microbiol. Rev. 2021. Vol.34, Iss.3. P.e00103–e00120. https://doi.org/10.1128/CMR.00103-20
3. Stikker B.S., Hendriks R.W., Stadhouders R. Decoding the genetic and epigenetic basis of asthma // Allergy. 2023. Vol.78, Iss.4. P.940–956. https://doi.org/10.1111/all.15666
4. Koefoed H.J.L, Zwitserloot A.M., Vonk J.M., Koppelman G.H. Asthma, bronchial hyperresponsiveness, allergy and lung function development until early adulthood: a systematic literature review // Pediatr. Allergy Immunol. 2021. Vol.32, Iss.6. P.1238–1254. https://doi.org/10.1111/pai.13516
5. Jenssen B.P., Walley S.C., Boykan R., Caldwell A.L., Camenga D. Protecting children and adolescents from tobacco and nicotine // Pediatrics. 2023. Vol.151, Iss.5. Article number:e2023061804. https://doi.org/10.1542/peds.2023-061804
6. Dai X., Gil G.F., Reitsma M.B., Ahmad N.S., Anderson J.A., Bisignano C., Carr S., Feldman R., Hay S.I., He J., Iannucci V., Lawlor H.R., Malloy M.J., Marczak L.B., McLaughlin S.A., Morikawa L., Mullany E.C., Nicholson S.I., O'Connell E.M., Okereke C., Sorensen R.J.D., Whisnant J., Aravkin A.Y., Zheng P., Murray C.J.L., Gakidou E. Health effects associated with exposure to secondhand smoke: a burden of proof study // Nat. Med. 2024. Vol.28, Iss.10. P.2045– 2055. https://doi.org/10.1038/s41591-022-01978-x
7. Hashimoto K., Maeda H., Iwasa H., Kyozuka H., Maeda R., Kume Y., Ono T., Chishiki M., Sato A., Ogata Y., Murata T., Fujimori K., Shinoki K., Nishigori H., Yasumura S., Hosoya M. Tobacco exposure during pregnancy and infections in infants up to 1 year of age: the Japan environment and children’s study // J. Epidemiol. 2023. Vol.33, Iss.10. P.489–497. https://doi.org/10.2188/jea.JE20210405
8. Wang Х., Li Y., Shi T., Bont L.J., Chu H.Y., Zar H.J., Wahi-Singh B., Ma Y., Cong B., Sharland E., Riley R.D., Deng J., Figueras-Aloy J., Heikkinen T., Jones M.H., Liese J.G., Markić J., Mejias A., Nunes V.C., Resch B., Satav A., Yeo K.T., Simões E.A.F., Nair H. Global disease burden of and risk factors for acute lower respiratory infections caused by respiratory syncytial virus in preterm infants and young children in 2019: a systematic review and meta-analysis of aggregated and individual participant data // Lancet. 2024. Vol.403, Iss.10433. P.1241–1253. https://doi.org/10.1016/S0140-6736(24)00138-7
9. Gottlieb J. Community-acquired respiratory viruses // Curr. Opin. Organ Transplant. 2019. Vol.24, Iss.3. P.311–317. https://doi.org/10.1097/MOT.0000000000000633
10. Atwell J., Chico M., Vaca M., Arévalo-Cortes A., Karron R., Cooper Ph.J. Effect of infant viral respiratory disease on childhood asthma in a non-industrialized setting // Clin. Transl. Allergy. 2023. Vol.13, Iss.8. Article number:e12291. https://doi.org/10.1002/clt2.12291
11. de Jesús Romero-Tapia S., Guzmán Priego C.G., Del-Río-Navarro B.E., Sánchez-Solis M. Advances in the relationship between respiratory viruses and asthma // J. Clin Med. 2023. Vol.12, Iss.17. Article number:5501. https://doi.org/10.3390/jcm12175501
12. Moriyama M., Hugentobler W.J., Iwasaki A. Seasonality of respiratory viral infections // Annu. Rev. Virol. 2020. Vol.7, Iss.1. P.83–101. https://doi.org/10.1146/annurev-virology-012420-022445
13. Yadav K.K., Awasthi S. Childhood pneumonia: what's unchanged, and what's new? // Indian J. Pediatr. 2023. Vol.90, Iss.7. P.693–699. https://doi.org/10.1007/s12098-023-04628-3
14. Martikainen M., Tossavainen T., Hannukka N., Roponen M. Pollen, respiratory viruses, and climate change: Synergistic effects on human health // Environ Res. 2023. Vol.219. Article number:115149. https://doi.org/10.1016/j.envres.2022.115149
15. Hussain S.A., Mejias A., Ramilo O., Peeples M.E., Grayson M.H. Postviral atopic airway disease: pathogenesis and potential avenues for intervention // Expert Rev. Clin. Immunol. 2019. Vol.15, Iss.1. P.49–58. https://doi.org/10.1080/1744666X.2019.1541737
16. Gauvreau G.M., Bergeron C., Boulet L., Cockcroft D.W., Côté A., Davis B.E., Leigh R., Myers I., O'Byrne P.M., Sehmi R. Sounding the alarmins – the role of alarmin cytokines in asthma // Allergy. 2023. Vol.78, Iss.2. P.402–417. https://doi.org/10.1111/all.15609
17. Habib N, Pasha M.A., Tang D.D. Current understanding of asthma pathogenesis and biomarkers // Cells. 2022. Vol.11, Iss.17. Article number:2764. https://doi.org/10.3390/cells11172764
18. Williams T.C., Loo S., Nichol K.S., Reid A.T., Veerati P.A., Esneau C., Wark P.A.B., Grainge C.L., Knight D.A., Vincent T., Jackson C.L., Alton K., Shimkets R.A., Girkin J.L., Bartlett N.W. IL-25 blockade augments antiviral immunity during respiratory virus infection // Commun. Biol. 2022. Vol.5, Iss.1. Article number:415. https://doi.org/10.1038/s42003-022-03367-z
19. Frey A., Lunding L.P., Ehlers J.C., Weckmann M., Zissler U.M., Wegmann M. More than just a barrier: the immune functions of the airway epithelium in asthma pathogenesis // Front. Immunol. 2020. Vol.11. Article number:761. https://doi.org/10.3389/fimmu.2020.00761
20. Lee C.Y., Sung C.H., Wu V.C., Chang Y.C., Chang J.C., Fang Y.P., Wang N.M., Chou T.Y., Chan Y.J. Clinical characteristics and differential cytokine expression in hospitalized Taiwanese children with respiratory syncytial virus and rhinovirus bronchiolitis // J. Microbiol. Immunol. Infect. 2023. Vol.56, Iss.2. P.282–291. https://doi.org/10.1016/j.jmii.2022.08.013
21. Rosas-Salazar C., Chirkova T., Gebretsadik T., Chappell J.D., Peebles Jr R.S., Dupont W.D., Jadhao S.J., Gergen P.J. Respiratory syncytial virus infection during infancy and asthma during childhood in the USA (INSPIRE): a populationbased, prospective birth cohort study // Lancet. 2023. Vol.401, Iss.10389. P.1669–1680. https://doi.org/10.1016/S0140-736(23)00811-5
22. Billard M., Bont L.J. The link between respiratory syncytial virus infection during infancy and asthma during childhood // Lancet. 2023. Vol.401, Iss.10389. P.1632–1633. https://doi.org/10.1016/S0140-6736(23)00672-4
23. Agac A., Kolbe S.M., Ludlow M., Osterhaus Albert D.M.E., Meineke R., Rimmelzwaan G.F. Host responses to respiratory syncytial virus infection // Viruses. 2023. Vol.15, Iss.10. Article number:1999. https://doi.org/10.3390/v15101999
24. Priante E., Cavicchiolo M.E., Baraldi E. RSV infection and respiratory sequelae // Minerva Pediatr. 2018. Vol.70, Iss.6. P.623–633. https://doi.org/10.23736/S0026-4946.18.05327-6
25. Liew K.Y., Koh S.K., Hooi S.L., Lup Ng M.K., Chee H., Harith H.H., Israf D.A., Ling Tham C.L. Rhinovirus-induced cytokine alterations with potential implications in asthma exacerbations: a systematic review and meta-analysis // Front. Immunol. 2022. Vol.13. Article number:782936. https://doi.org/10.3389/fimmu.2022.782936
26. Hayashi Y., Sada M., Shirai T., Okayama K., Kimura R., Kondo M., Okodo M., Tsugawa T., Ryo A., Kimura H. Rhinovirus infection and virus-induced asthma // Viruses. 2022. Vol.14, Iss.12. Article number:2616. https://doi.org/10.3390/v14122616
27. Price A.S., Kennedy J.L. T-helper 2 mechanisms involved in human rhinovirus infections and asthma // Ann. Allergy Asthma Immunol. 2022. Vol.129, Iss.6. P.681–691. https://doi.org/10.1016/j.anai.2022.08.015
28. Myklebust A., Simpson M.R., Valand J., Langaas V.S., Jartti T., Døllner H., Risnes K. Bronchial reactivity and asthma at school age after early-life metapneumovirus infection // ERJ Open Res. 2024. Vol.10, Iss.1. Article number:00832-2023. https://doi.org/10.1183/23120541.00832-2023
29. Santos L.D., Antunes K.H., Muraro S.P., de Souza G.F., da Silva A.G., de Souza Felipe J., Zanetti L.C., Czepielewski R.S., Magnus K., Scotta M., Mattiello R., Maito F., de Souza A.P.D., Weinlich R., Ramirez Vinolo M.A., Porto B.N. TNFmediated alveolar macrophage necroptosis drives disease pathogenesis during respiratory syncytial virus infection // Eur. Respir. J. 2021. Vol.57, Iss.6. Article number:2003764. https://doi.org/10.1183/13993003.03764-2020
30. Xiang W., Li L., Wang B., Ali A.F., Li W. Profiles and predictive value of cytokines in children with human metapneumovirus pneumonia // Virol. J. 2022.Vol.19. Article number:214. https://doi.org/10.1186/s12985-022-01949-1
31. Wu G., Zhang Y., Niu L., Hu Y., Yang Y., Zhaoa Y. Interleukin-1β promotes human metapneumovirus replication via activating the cGAS-STING pathway // Virus. Res. 2024. Vol.343. Article number:199344. https://doi.org/10.1016/j.virusres.2024.199344
32. Cioccarelli C., Sanchez-Rodriguez R., Angioni R., Venegas F.C., Bertoldi N., Munari F., Cattelan A., Molon B., Viola A. IL1beta promotes TMPRSS2 expression and SARS-CoV-2 cell entry through the p38 MAPK-GATA2 axis // Front. Immunol. 2021. Vol.12. Article number:781352. https://doi.org/10.3389/fimmu.2021.781352
33. Castro I.A., Yang Y., Gnazzo V., Kim D., Dyken S.J.V., López C.B. Murine parainfluenza virus persists in lung innate immune cells sustaining chronic lung pathology // bioRxiv [Preprint]. 2023. Article number:566103. https://doi.org/10.1101/2023.11.07.566103
34. Zhao C., Pu J. Influence of host sialic acid receptors structure on the host specificity of influenza viruses // Viruses. 2022. Vol.14, Iss.10. Article number:2141. https://doi.org/10.3390/v14102141
35. Mifsud E.J., Kuba M., Barr I.G. Innate immune responses to influenza virus infections in the upper respiratory tract // Viruses. 2021. Vol.13, Iss.10. Article number:2090. https://doi.org/10.3390/v13102090
36. Bant P., Owczarek W., Szczygielski K., Cierniak S., Kania J., Jurkiewicz D. Occurrence of IL-1, IL-10, CD25, CD40, and CD69 in the tissue of palatine tonsils // Postepy Dermatol. Alergol. 2022. Vol.39, Iss.1. P.182–188. https://doi.org/10.5114/ada.2021.110285
37. Ferreira A.C., Sacramento S.Q., Pereira-Dutra F.S., Fintelman-Rodrigues N., Silva P.P., Mattos M., de Freitas C.S., Marttorelli A. de Melo G.R., Campos M.M., Azevedo-Quintanilha I.G., Carlos A.S., Emídio J.V., Garcia C.C., Bozza P.T., Bozza F.A., Souza T.M.L. Severe influenza infection is associated with inflammatory programmed cell death in infected macrophages // Front. Cell. Infect. Microbiol. 2023. Vol.13. Article number:1067285. https://doi.org/10.3389/fcimb.2023.1067285
38. Short K.R., Kuiken T., Riel D.V. Role of endothelial cells in the pathogenesis of influenza in humans // J. Infect. Dis. 2019. Vol.220, Iss.11. P.1859–1860. https://doi.org/10.1093/infdis/jiz349
39. Kaur S., Bansal R., Kollimuttathuillam S., Gowda A.M., Singh B., Mehta D., Maroules M. The looming storm: blood and cytokines in COVID-19 // Blood Rev. 2021. Vol.46. Article number:100743. https://doi.org/10.1016/j.blre.2020.100743
40. Minkoff J.M., tenOever B. Innate immune evasion strategies of SARS-CoV-2 // Nat. Rev. Microbiol. 2023. Vol.21, Iss.3. P.178–194. https://doi.org/10.1038/s41579-022-00839-1
41. Chang S.H., Minn D., Kim S.W., Kim Y.K. Inflammatory markers and cytokines in moderate and critical cases of COVID-19 // Clin. Lab. 2021. Vol.67, Iss.9. P.2115–2120. https://doi.org/10.7754/Clin.Lab.2021.210142
42. Nathanielsz J., Toh Z.Q., Ha Do L.A., Mulholland K., Licciardi P.V. SARS-CoV-2 infection in children and implications for vaccination // Pediatr. Res. 2023. Vol.93, Iss.5. P.1177–1187. https://doi.org/10.1038/s41390-022-02254-x
43. Kunnumakkara A.B., Rana V., Parama D., Banik K., Girisa S., Henamayee S., Thakur K.K., Dutta U., Garodia P., Gupta S.C., Aggarwal B.B. COVID-19, cytokines, inflammation, and spices: how are they related? // Life Sci. 2021. Vol.284. Article number:119201. https://doi.org/10.1016/j.lfs.2021.119201
44. de Lima T.M., Martins R.B., Miura C.S., Oliveira Souza M.V., Anzolini Cassiano M.H., Rodrigues T.S., Veras F.P., de Freitas Sousa J., Gomes R., de Almeida G.M., Melo S.R., da Silva G.C., Dias M., Capato C.F., Silva M.L., de Barros Luiz V.E.D., Rodrigues Carenzi L., Zamboni D.S., de Melo Jorge D.M., de Queiroz Cunha F., Tamashiro E., Anselmo- Lima W.T., Pereira Valera F.C., Arruda E. Tonsils are major sites of persistence of SARS-CoV-2 in children // Microbiol. Spectr. 2023. Vol.11, Iss.5. P.e0134723. https://doi.org/10.1128/spectrum.01347-23
45. Atasheva S., Shayakhmetov D.M. Cytokine responses to adenovirus and adenovirus vectors // Viruses. 2022. Vol.14, Iss.5. Article number:888. https://doi.org/10.3390/v14050888
46. Li J., Wei J., Xu Z., Jiang C., Li M., Chen J., Li Y., Yang M., Gu Y., Wang F., Shu Y., Yang Y., Sun L., Liu X. Cytokine/ chemokine expression is closely associated disease severity of human adenovirus infections in immunocompetent adults and predicts disease progression // Front. Immunol. 2021. Vol.12. Article number:691879. https://doi.org/10.3389/fimmu.2021.691879
47. Bagasi A.A., Howson-Wells H.C., Clark G., Tarr A.W., Soo S., Irving W.L., McClure C.P. Human bocavirus infection and respiratory tract disease identified in a UK patient cohort // J. Clin. Virol. 2020. Vol.129. Article number:104453. https://doi.org/10.1016/j.jcv.2020.104453
48. Oldhoff E., Bennet R., Eriksson M., Allander T. Human bocavirus 1 epidemiology in children in relation to virus load and codetection // Acta Paediatr. 2023. Vol.112. P.1049–1055. https://doi.org/10.1111/apa.16699
49. Ademhan Tural D., Yalcin E., Emiralioglu N., Ozsezen B., Alp A., Sunman B., Gozmen O., Dogru D., Ozcelik U., Kiper N. Human bocavirus and human metapneumovirus in children with lower respiratory tract infections: effects on clinical, microbiological features and disease severity // Pediatr. Int. 2022. Vol.64. Article number:e15102. https://doi.org/10.1111/ped.15102
50. Alkubaisi N.A., Aziz I.M., Alsaleh A.N., Alhetheel A.F., Almajhdi F.N. Molecular profiling of inflammatory mediators in human respiratory syncytial virus and human bocavirus infection // Genes (Basel). 2023. Vol.14, Iss.5. Article num ber:1101. https://doi.org/10.3390/genes14051101
Рецензия
Для цитирования:
Манукян А.С., Приходько А.Г. Роль респираторных инфекций в формировании гиперреактивности дыхательных путей у детей. Бюллетень физиологии и патологии дыхания. 2024;(93):121-131. https://doi.org/10.36604/1998-5029-2024-93-121-131
For citation:
Manukyan A.S., Prikhodko A.G. The role of respiratory infections in the formation of airway hyperresponsiveness in children. Bulletin Physiology and Pathology of Respiration. 2024;(93):121-131. (In Russ.) https://doi.org/10.36604/1998-5029-2024-93-121-131