Activity of the apoptosis-inducing ligand TRAIL in the blood of patients with chronic obstructive pulmonary disease who had COVID-19
https://doi.org/10.36604/1998-5029-2025-95-18-25
Abstract
Aim. To assess the serum level of the apoptosis-inducing ligand TRAIL in patients with chronic obstructive pulmonary disease (COPD) 12 months after COVID-19 in relationship to measures of systemic inflammation.
Materials and methods. The study included 90 patients aged 46 to 79 years with stable COPD who had experienced COVID-19 (regardless of COPD and COVID-19 severity) 12 months after hospital discharge. The comparison group consisted of 43 patients with stable COPD and no history of COVID-19. The serum TRAIL level was measured by enzymelinked immunosorbent assay using specific antibodies (RayBiotech, Human, USA). Levels of interleukin (IL)-6, IL-10, vascular endothelial growth factor (VEGF) (Vector-Best, Russia), and C-reactive protein (CRP) (Biochemmack, Austria) were determined by direct serological “sandwich-type” assays with mono- and polyclonal antibodies.
Results. Twelve months after COVID-19, patients with stable COPD showed intensified apoptosis and systemic inflammation, evidenced by a 33.7% increase in serum TRAIL, 71.3% in IL-6, 57.5% in CRP, and 69.0% in VEGF compared to COPD patients without a history of COVID-19. A strong association was found between TRAIL and IL-10 levels (p < 0.01), a moderate positive correlation was noted with IL-6 (p < 0.05), and a weak correlation with CRP (p > 0.05).
Conclusion. This is the first report of significantly higher serum TRAIL activity 12 months after COVID-19 in patients with stable COPD compared to those without a history of COVID-19. TRAIL ligand showed a strong association with systemic inflammation markers (IL-10, IL-6), reflecting apoptosis-dependent mechanisms of inflammation in COPD. Measuring serum TRAIL levels may be useful for comprehensive evaluations of patients with COPD recovering from COVID-19.
About the Authors
E. G. KulikRussian Federation
Ekaterina G. Kulik, MD, PhD (Med.), Associate Professor of Department of Faculty and Polyclinic Therapy
95 Gor'kogo Str., Blagoveshchensk, 675000
V. I. Pavlenko
Russian Federation
Valentina I. Pavlenko, MD, PhD, DSc (Med.), Associate Professor, Head of Department of Faculty and Polyclinic Therapy
95 Gor'kogo Str., Blagoveshchensk, 675000
S. V. Naryshkina
Russian Federation
Svetlana V. Naryshkina, MD, PhD, DSc (Med.), Professor, Professor of Department of Faculty and Polyclinic Therapy
95 Gor'kogo Str., Blagoveshchensk, 675000
References
1. Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. Report 2023. Available at: https://goldcopd.org/2023-gold-report-2/
2. Polyanskaya E.V., Kolosov V.P., Bezrukov N.S., Manakov L.G. The indirect economic burden of morbidity of respiratory organs diseases: the example of Amur region. Health care of the Russian Federation 2014; 58(2):43–45 (in Russian).
3. Agustí A., Hogg J.C. Update on the pathogenesis of chronic obstructive pulmonary disease. N. Engl. J. Med. 2019; 381(13):1248–1256. https://doi.org/10.1056/NEJMra1900475
4. Salvi S.S., Barnes P.J. Chronic obstructive pulmonary disease in non-smokers. Lancet 2009; 374(9691):733–743. https://doi.org/10.1016/S0140-6736(09)61303-9
5. Walters E.H., Shukla S.D., Mahmood M.Q., Ward C. Fully integrating pathophysiological insights in COPD: an updated working disease model to broaden therapeutic vision. Eur. Respir. Rev. 2021; 30(160):200364. https://doi.org/10.1183/16000617.0364-2020
6. Dejas L., Santoni K., Meunier E., Lamkanfi M. Regulated cell death in neutrophils: from apoptosis to NETosis and pyroptosis. Semin. Immunol. 2023; 70:101849. https://doi.org/10.1016/j.smim.2023.101849
7. Wiley S.R., Schooley K., Smolak P.J., Din W.S., Huang C.P., Nicholl J.K., Sutherland G.R., Smith T.D., Rauch C., Smith C.A., Goodwin R.G. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 1995; 3:673–682. https://doi.org/10.1016/1074-7613(95)90057-8
8. Ni A.N., Sergeeva E.V., Shumatova T.A., Zernova E.S., Grigoryan L.A., Katenkova E.Yu., Shishatskaya S.N. [TRAIL biomarker apoptosis, brand new method in diagnosis and curing processes of various diseases]. Sovremennye problemy nauki i obrazovaniya = Modern problems of science and education 2016; 6:116 (in Russian).
9. Sauler M., Bazan I.S., Lee P.J. Cell death in the lung: the apoptosis-necroptosis axis. Annu. Rev. Physiol. 2019; 81:375–402. https://doi.org/10.1146/annurev-physiol-020518-114320
10. Suzuki T., Moraes T.J., Vachon E., Ginzberg H.H., Huang T.T., Matthay M.A., Hollenberg M.D., Marshall J., McCulloch C.A., Abreu M.T., Chow C.W., Downey G.P. Proteinase-activated receptor-1 mediates elastase-induced apoptosis of human lung epithelial cells. Am. J. Respir. Cell Mol. Biol. 2005; 33(3):231–247. https://doi.org/10.1165/rcmb.20050109OC
11. Sears C.R., Zhou H., Justice M.J., Fisher A.J., Saliba J., Lamb I., Wicker J., Schweitzer K.S., Petrache I. Xeroderma pigmentosum group C deficiency alters cigarette smoke DNA damage cell fate and accelerates emphysema development. Am. J. Respir. Cell Mol. Biol. 2018; 58(3):402–411. https://doi.org/10.1165/rcmb.2017-0251OC
12. Le Cras T.D., Abman S.H. Early disruption of VEGF receptor signaling and the risk for adult emphysema. Am. J. Respir. Crit. Care Med. 2020; 201(5):620–621.https://doi.org/10.1164/rccm.201909-1698LE
13. Kulik E.G., Pavlenko V.I., Bakina A.A., Naryshkina S.V. [Impact of the previous 2019 novel coronavirus infection on the structural and functional parameters of the right heart and on pulmonary hemodynamics in patients with chronic obstructive pulmonary disease]. Vestnik sovremennoy klinicheskoy meditsiny = The Bulletin of Contemporary Clinical Medicine (Russia) 2024; 17(1):15–21 (in Russian). https://doi.org/10.20969/VSKM.2024.17(1).15-21
14. Ren Y., Shu T., Wu D., Mu J., Wang C., Huang M., Han Y., Zhang X.Y., Zhou W., Qiu Y., Zhou X. The ORF3a protein of SARS-CoV-2 induces apoptosis in cells. Cell. Mol. Immunol. 2020; 17(8):881–883. https://doi.org/10.1038/s41423020-0485-9
15. Li S., Zhang Y., Guan Z., Li H., Ye M., Chen X., Shen J., Zhou Y., Shi Z.L., Zhou P., Peng K. SARS-CoV-2 triggers inflammatory responses and cell death through caspase-8 activation. Signal Transduct. Target. Ther. 2020; 5(1):235. https://doi.org/10.1038/s41392-020-00334-0
16. Yang R., Zhao Q., Rao J., Zeng F., Yuan S., Ji M., Sun X., Li J., Yang J., Cui J., Jin Z., Liu L., Liu Z. SARS-CoV2 accessory protein ORF7b mediates tumor necrosis factor-α-induced apoptosis in cells. Front. Microbiol. 2021; 12:654709. https://doi.org/10.3389/fmicb.2021.654709
17. Li X., Zhang Z., Wang Z., Gutiérrez-Castrellón P., Shi H. Cell deaths: involvement in the pathogenesis and intervention therapy of COVID-19. Signal Transduct. Target. Ther. 2022; 7(1):186. https://doi.org/10.1038/s41392-022-01043-6
18. Cizmecioglu A., Akay Cizmecioglu H., Goktepe M.H., Emsen A., Korkmaz C., Esenkaya Tasbent F., Colkesen F., Artac H. Apoptosis-induced T-cell lymphopenia is related to COVID-19 severity. J. Med. Virol. 2021; 93(5):2867–2874. https://doi.org/10.1002/jmv.26742
19. Kvasnikov A.M., Borovkova N.V., Petrikov S.S., Godkov M.A., Andreev Yu.V., Storozheva M.V., Poluektova V.B., Kasholkina E.A., Lebedev D.A., Popugaev K.A. [Regulation of lymphocyte apoptosis in intensive care patients with COVID-19]. Anesteziologiya i Reanimatologiya = Russian Journal of Anaesthesiology and Reanimatology 2023; 1:49– 55 (in Russian). https://doi.org/10.17116/anaesthesiology202301149
20. Yakhontov D.A., Derisheva D.A., Lukinov V.L. [Systemic inflammation in patients with stable coronary heart disease in the post-COVID period depending on the severity of COVID-19 transfer]. Byulleten' meditsinskoy nauki = Bulletin of Medical Science 2024; 3:47–55 (in Russian). https://doi.org/10.31684/25418475-2024-3-47
21. Peluso M.J., Ryder D., Flavell R.R., Wang Y., Levi J., LaFranchi B.H., Deveau T.M., Buck A.M., Munter S.E., Asare K.A., Aslam M., Koch W., Szabo G., Hoh R., Deswal M., Rodriguez A.E., Buitrago M., Tai V., Shrestha U., Lu S., Goldberg S.A., Dalhuisen T., Vasquez J.J., Durstenfeld M.S., Hsue P.Y., Kelly J.D., Kumar N., Martin J.N., Gambhir A., Somsouk M., Seo Y., Deeks S.G., Laszik Z.G., VanBrocklin H.F., Henrich T.J. Tissue-based T cell activation and viral RNA persist for up to 2 years after SARS-CoV-2 infection. Sci. Transl. Med. 2024; 16(754):eadk3295. https://doi.org/10.1126/scitranslmed.adk3295
22. Park J., Dean L.S., Jiyarom B., Gangcuangco L.M., Shah P., Awamura T., Ching L.L., Nerurkar V.R., Chow D.C., Igno F., Shikuma C.M., Devendra G. Elevated circulating monocytes and monocyte activation in COVID-19 convalescent individuals. Front. Immunol. 2023; 14:1151780. https://doi.org/10.3389/fimmu.2023.1151780
23. Wu Y., Shen Y., Zhang J., Wan C., Wang T., Xu D., Yang T., Wen F. Increased serum TRAIL and DR5 levels correlated with lung function and inflammation in stable COPD patients. Int. J. Chron. Obstruct. Pulmon. Dis. 2015; 10:2405–2412. https://doi.org/10.2147/COPD.S92260
24. Kim K.K., Dotson M.R., Agarwal M., Agarwal M., Jibing Y., Bradley P.B. Efferocytosis of apoptotic alveolar epithelial cells is sufficient to initiate lung fibrosis. Cell Death. Dis. 2018; 9(11):1056. https://doi.org/10.1038/s41419-0181074-z
25. Beirag N., Kumar C., Madan T., Shamji M.H., Bulla R., Mitchell D., Murugaiah V., Neto M.M., Temperton N., Idicula-Thomas S., Varghese P.M., Kishore U. Human surfactant protein D facilitates SARS-CoV-2 pseudotype binding and entry in DC-SIGN expressing cells, and downregulates spike protein induced inflammation. Front. Immunol. 2022; 13:960733. https://doi.org/10.3389/fimmu.2022.960733
Review
For citations:
Kulik E.G., Pavlenko V.I., Naryshkina S.V. Activity of the apoptosis-inducing ligand TRAIL in the blood of patients with chronic obstructive pulmonary disease who had COVID-19. Bulletin Physiology and Pathology of Respiration. 2025;(95):18-25. (In Russ.) https://doi.org/10.36604/1998-5029-2025-95-18-25