Preview

Бюллетень физиологии и патологии дыхания

Расширенный поиск

Механизмы повреждающего воздействия атипичных возбудителей на респираторный эпителий: инфекционная и постинфекционная гиперреактивность дыхательных путей у детей

https://doi.org/10.36604/1998-5029-2025-95-149-160

Аннотация

Цель – проанализировать и обобщить имеющиеся на сегодняшнем этапе данные литературы о роли атипичных респираторных патогенов (Mycoplasma pneumoniae и Chlamydia pneumoniae) в развитии гиперреактивности дыхательных путей у детей. В статье представлены основные механизмы, посредством которых M. pneumoniae и Ch. pneumoniae могут повреждать клетки респираторного эпителия и способствовать формированию гиперреактивности бронхов. Показано, что повреждение эпителия происходит как напрямую, за счет истощения питательных ресурсов, окислительного стресса и нарушения механизмов восстановления, так и опосредованно, через иммунные механизмы, включая выработку специфических иммуноглобулин E-антител и дисбаланс цитокинов. Выделены особенности атипичных патогенов, приводящие к развитию тяжелых осложнений: продукция токсина внебольничного респираторного дистресс-синдрома (CARDS TX) M. pneumoniae, липополисахарида и белка теплового шока 60 Ch. pneumoniae. Отдельный раздел посвящен способности атипичных возбудителей формировать биоплёнки для повышения выживаемости и патогенности. Подчеркнуто, что повреждённый эпителий, в свою очередь, индуцирует продукцию провоспалительных медиаторов, тем самым усугубляя воспаление дыхательных путей и способствуя в ряде случаев формированию бронхиальной гиперреактивности. Раскрытие механизмов повреждающего воздействия атипичных возбудителей на дыхательные пути, по мнению авторов, позволит разработать новые подходы к диагностике, профилактике и лечению респираторных заболеваний у детей.

Об авторах

А. С. Манукян
Федеральное государственное бюджетное научное учреждение «Дальневосточный научный центр физиологии и патологии дыхания»
Россия

Айкуш Славиковна Манукян, аспирант, младший научный сотрудник, лаборатория механизмов вирус-ассоциированных патологий развития

675000, г. Благовещенск, ул. Калинина, 22



А. Приходько
Федеральное государственное бюджетное научное учреждение «Дальневосточный научный центр физиологии и патологии дыхания»
Россия

Анна Григорьевна Приходько, д-р мед. наук, главный научный сотрудник, лаборатория функциональных методов исследования дыхательной системы

675000, г. Благовещенск, ул. Калинина, 22



Список литературы

1. Reinsberg M., Siebert S., Dreher C., Bogs T., Ganschow R., Yavuz S.T. Predictors of airway hyperresponsiveness in symptomatic children with normal spirometry and suspicious of possible asthma // Int. Arch. Allergy Immunol. 2022. Vol.183, Iss.5. P.517–525. https://doi.org/10.1159/000520670

2. Atwell J., Chico M., Vaca M., Arévalo-Cortes A., Karron R., Cooper Ph.J. Effect of infant viral respiratory disease on childhood asthma in a non-industrialized setting // Clin. Transl. Allergy. 2023. Vol.13, Iss.8. Article number:e12291. https://doi.org/10.1002/clt2.12291

3. Liu X., Wang Y., Chen C., Liu K. Mycoplasma pneumoniae infection and risk of childhood asthma: a systematic re- view and meta-analysis // Microb. Pathog. 2021. Vol.155. Article number:104893. https://doi.org/10.1016/j.micpath.2021.104893

4. Garin N., Marti C., Lami A.S., Prendki V. Atypical pathogens in adult community-acquired pneumonia and implications for empiric antibiotic treatment: a narrative review // Microorganisms. 2022. Vol.10, Iss.12. Article number:2326. https://doi.org/10.3390/microorganisms10122326

5. Shim J.Y. Current perspectives on atypical pneumonia in children // Clin. Exp. Pediatr. 2020. Vol.63, Iss.12. P.469–476. https://doi.org/10.3345/cep.2019.00360

6. Biscardi S., Lorrot M., Marc E., Moulin F., Boutonnat-Faucher B., Heilbronner C., Iniguez J., Chaussain M., Nicand E., Raymond J., Gendrel D. Mycoplasma pneumoniae and asthma in children // Clin. Infect. Diseases. 2004. Vol.3, Iss.10. P.1341–1346. https://doi.org/10.1086/392498

7. Song Z., Jia G., Luo G., Han C., Zhang B., Wang X. Global research trends of Mycoplasma pneumoniae pneumonia in children: a bibliometric analysis // Front. Pediatr. 2023. Vol.11. Article number:1306234. https://doi.org/10.3389/fped.2023.1306234

8. Tong L., Huang S., Zheng C., Zhang Y., Chen Z. Refractory Mycoplasma pneumoniae pneumonia in children: early recognition and management // J. Clin. Med. 2022. Vol.11, Iss.10. Article number:2824. https://doi.org/10.3390/jcm11102824

9. Hahn D.L., Azenabor A.A., Beatty W.L., Byrne G.I. Chlamydia pneumoniae as a respiratory pathogen // Front. Biosci. 2002. Vol.7. P.e66–e76. https://doi.org/10.2741/hahn

10. Behar S. M., Briken V. Apoptosis inhibition by intracellular bacteria and its consequence on host immunity // Curr. Opin. Immunol. 2019. Vol.60. P.103–110. https://doi.org/10.1016/j.coi.2019.05.007

11. Xiang W., Yu N., Lei A., Li X., Tan S., Huang L., Zhou Z. Insights into host cell cytokines in chlamydia infection // Front. Immunol. 2021. Vol.12. Article number:639834. https://doi.org/10.3389/fimmu.2021.639834

12. Xue Y., Wang M., Han H. Interaction between alveolar macrophages and epithelial cells during Mycoplasma pneumoniae infection // Front. Cell Infect. Microbiol. 2023. Vol.13. Article number:1052020. https://doi.org/10.3389/fcimb.2023.1052020

13. Yiwen C., Yueyue W., Lianmei Q., Cuiming Z., Xiaoxing Y. Infection strategies of mycoplasmas: unraveling the panoply of virulence factors // Virulence. 2021. Vol.12. P.788–817. https://doi.org/10.1080/21505594.2021.1889813

14. Georgakopoulou V.E., Lempesis I.G., Sklapani P., Trakas N., Spandidos D.A. Exploring the pathogenetic mechanisms of Mycoplasma pneumoniae (Review) // Exp. Ther. Med. 2024. Vol.28, Iss.1. Article number:271. https://doi.org/10.3892/etm.2024.12559

15. Shimada K., Crother T.R., Arditi M. Innate immune responses to Chlamydia pneumoniae infection: role of TLRs, NLRs, and the inflammasome // Microbes Infect. 2012. Vol.14, Iss.14. P.1301–1307. https://doi.org/10.1016/j.micinf.2012.08.004

16. Sun G., Xu X., Wang Y., Shen X., Chen Z., Yang S. Mycoplasma pneumoniae infection induces reactive oxygen species and DNA damage in A549 human lung carcinoma cells // Infect. Immun. 2008. Vol.76, Iss.10. P.4405–4413. https://doi.org/10.1128/IAI.00575-08

17. Kälvegren H., Bylin H., Leanderson P., Richter A., Grenegård M., Bengtsson T. Chlamydia pneumoniae induces nitric oxide synthase and lipoxygenase-dependent production of reactive oxygen species in platelets. Effects on oxidation of low density lipoproteins // Thromb. Haemost. 2005. Vol.94, Iss.2. P.327–335. https://doi.org/10.1160/TH04-06-0360

18. Соодаева С.К. Свободнорадикальные механизмы повреждения при болезнях органов дыхания // Пульмонология. 2012. Т.22, №1. С.5–10. https://doi.org/10.18093/0869-0189-2012-0-1-5-10

19. Juan С.A., Pérez de la Lastra J.M., Plou F.J., Pérez-Lebeña E. The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies // Int. J. Mol. Sci. 2021. Vol.22, Iss.9. Article number:4642. https://doi.org/10.3390/ijms22094642

20. Mittal M., Siddiqui M.R., Tran K., Reddy S.P., Malik A.B. Reactive oxygen species in inflammation and tissue injury // Antioxid. Redox. Signal. 2014. Vol.20, Iss.7. P.1126–1167. https://doi.org/10.1089/ars.2012.5149

21. Smith-Norowitz T.A., Loeffler J., Huang Y., Klein E., Norowitz Y.M., Hammerschlag M.R., Joks R., Kohlhoff S. Chlamydia pneumoniae immunoglobulin E antibody levels in patients with asthma compared with non-asthma // Heliyon. 2020. Vol.6, Iss.2. Article number:e03512. https://doi.org/10.1016/j.heliyon.2020.e03512

22. Ye Q., Mao J., Shu Q., Shang S. Mycoplasma pneumoniae induces allergy by producing P1-specific immunoglobulin E // Ann. Allergy Asthma Immunol. 2018. Vol.121, Iss.1. P.90–97. https://doi.org/10.1016/j.anai.2018.03.014

23. Kraft M. The role of bacterial infections in asthma // Clin. Chest Med. 2000. Vol.21, Iss.2. P.301–313. https://doi.org/10.1016/s0272-5231(05)70268-9

24. Hahn D.L. Chlamydia pneumoniae and chronic asthma: updated systematic review and meta-analysis of population attributable risk // PLoS One. 2021. Vol.16, Iss.4. Article number:e0250034. https://doi.org/10.1371/journal.pone.0250034

25. Jiang Y., Bao C., Zhao X., Chen Y., Song Y., Xiao Z. Intestinal bacteria flora changes in patients with Mycoplasma pneumoniae pneumonia with or without wheezing // Sci. Rep. 2022. Vol.12, Iss.1. Article number:5683. https://doi.org/10.1038/s41598-022-09700-0

26. Wang H., Zhang Z., Zhao C., Peng Y., Song W., Xu W., Wen X., Liu J., Yang H., Shi R., Zhaoa S. Serum IL-17A and IL-6 in paediatric Mycoplasma pneumoniae pneumonia: implications for different endotypes // Emerg. Microbes Infect. 2024. Vol.13, Iss.1. Article number:2324078. https://doi.org/10.1080/22221751.2024.2324078

27. Su X., You X., Luo H., Liang K., Chen L., Tian W., Ye Z., He J. Community-acquired respiratory distress syndrome toxin: unique exotoxin for M. pneumonia // Front. Microbiol. 2021. Vol.12. Article number:766591. https://doi.org/10.3389/fmicb.2021.766591

28. Ramasamy K., Balasubramanian S., Kirkpatrick A., Szabo D., Pandranki L, Baseman J.B., Kannan T.R. Mycoplasma pneumoniae CARDS toxin exploits host cell endosomal acidic pH and vacuolar ATPase proton pump to execute its biological activities // Sci. Rep. 2021. Vol.11, Iss.1. Article number:11571. https://doi.org/10.1038/s41598-021-90948-3

29. Medina J.L., Coalson J.J., Brooks E.G., Winter V.T., Chaparro A., Principe M.F.R., Kannan T.R., Baseman J.B., Dube P.H. Mycoplasma pneumoniae CARDS toxin induces pulmonary eosinophilic and lymphocytic inflammation // Am. J. Respir. Cell Mol. Biol. 2012. Vol.46, Iss.6. P.815–822. https://doi.org/10.1165/rcmb.2011-0135OC

30. Leng J., Yang Z., Wang W. Diagnosis and prognostic analysis of Mycoplasma pneumoniae pneumonia in children based on high-resolution computed tomography // Contrast Media Mol. Imaging. 2022. Vol.2022. Article number:1985531. https://doi.org/10.1155/2022/1985531

31. Jung J.H., Kim G.E., Min I.K., Jang H., Kim S.Y., Kim M.J., Kim Y.H., Shin H.J., Yoon H., Sohn M.H., Lee M. Prediction of postinfectious bronchiolitis obliterans prognosis in children // Pediatr. Pulmonol. 2021. Vol.56, Iss.5. P.1069–1076. https://doi.org/10.1002/ppul.25220

32. Ngeh J., Anand V., Gupta S. Chlamydia pneumoniae and atherosclerosis – what we know and what we don't // Clin. Microbiol. Infect. 2002. Vol.8, Iss.1. P.2–13. https://doi.org/10.1046/j.1469-0691.2002.00382.x

33. Byrne G.I., Kalayoglu M.V. Chlamydia pneumoniae and atherosclerosis: links to the disease process // Am. Heart J. 1999. Vol.138. P.S488–S490. https://doi.org/10.1016/S0002-8703(99)70282-6

34. Kalayoglu M.V., Byrne G.I. Induction of macrophage foam cell formation by Chlamydia pneumoniae // J. Infect. Dis. 1988. Vol.177, Iss.3. P.725–729. https://doi.org/10.1086/514241

35. Kalayoglu M.V., Hoerneman B., LaVerda D., Morrison S.G., Morrison P.P., Byrne B.I. Cellular oxidation of lowdensity lipoprotein by Chlamydia pneumonia // J. Infect. Dis. 1999. Vol.180, Iss.3. P.780–790. https://doi.org/10.1086/314931

36. Sasu S., LaVerda D., Qureshi N., Golenbock D.T., Beasley D. Chlamydia pneumoniae and chlamydial heat shock protein 60 stimulate proliferation of human vascular smooth muscle cells via toll-like receptor 4 and p44/p42 mitogen-activated protein kinase activation // Circulation Res. 2001. Vol.89. P.244–250. https://doi.org/10.1161/hh1501.094184

37. Kak G., Raza M., Tiwari B.K. Interferon-gamma (IFN-gamma): exploring its implications in infectious diseases // Biomol. Concepts. 2018. Vol.9, Iss.1. P.64–79. https://doi.org/10.1515/bmc-2018-0007

38. Huston W.M., Barker C.J., Chacko A., Timms P. Evolution to a chronic disease niche correlates with increased sensitivity to tryptophan availability for the obligate intracellular bacterium Chlamydia pneumonia // J. Bacteriol. 2014. Vol.196, Iss.11. P.1915–1924. https://doi.org/10.1128/JB.01476-14

39. Mannonen L., Kamping E., Penttilä T., Puolakkainen M. IFN-gamma induced persistent Chlamydia pneumoniae infection in HL and mono mac 6 cells: characterization by real-time quantitative PCR and culture // Microb. Pathog. 2004. Vol.36, Iss.1. P.41–50. https://doi.org/10.2147/JBM.S303275

40. Eickhoff M., Thalmann J., Hess S., Martin M., Laue T., Kruppa J., Brandes G., Klos A. Host cell responses to Chlamydia pneumoniae in gamma interferon-induced persistence overlap those of productive infection and are linked to genes involved in apoptosis, cell cycle, and metabolism // Infect. Immun. 2007. Vol.75, Iss.6. P.2853–2863. https://doi.org/10.1128/IAI.01045-06

41. Riffaud C.M., Rucks T.A., Ouellette S.P. Persistence of obligate intracellular pathogens: alternative strategies to overcome host-specific stresses // Front. Cell. Infect. Microbiol. 2023. Vol.13. Article number:1185571. https://doi.org/10.3389/fcimb.2023.1185571

42. Blasi F., Aliberti S., Allegra L., Piatti G., Tarsia P., Ossewaarde J.M., Verweij V., Nijkamp F.P., Folkerts G. Chlamydophila pneumoniae induces a sustained airway hyperresponsiveness and inflammation in mice // Respir. Res. 2007. Vol.8, Iss.1. Article number:83. https://doi.org/10.1186/1465-9921-8-83

43. Panzetta M.E., Valdivia R.H., Saka H.A. Chlamydia persistence: a survival strategy to evade antimicrobial effects in-vitro and in-vivo // Front. Microbiol. 2018. Vol.9. Article number:3101. https://doi.org/10.3389/fmicb.2018.03101

44. Gieffers J., Durling L., Ouellette S.P., Rupp J., Maass M., Byrne G.I., Caldwell H. D. Genotypic differences in the Chlamydia pneumoniae tyrP locus related to vascular tropism and pathogenicity // J. Infect. Dis. 2003. Vol.188, Iss.8. P.1085–1093. https://doi.org/10.1086/378692

45. Chacko A., Beagley K.W., Timms P., Huston W.M. Human Chlamydia pneumoniae isolates demonstrate ability to recover infectivity following penicillin treatment whereas animal isolates do not // FEMS Microbiol. Lett. 2015. Vol.362, Iss.6. Article number:fnv015. https://doi.org/10.1093/femsle/fnv015

46. Feng M., Burgess A.C., Cuellar R.R., Schwab N.R., Balish M.F. Modelling persistent Mycoplasma pneumoniae biofilm infections in a submerged BEAS-2B bronchial epithelial tissue culture model // J. Med. Microbiol. 2021. Vol.70, Iss.1. Article number:001266 https://doi.org/10.1099/jmm.0.001266

47. Feng M., Schaff A.C., Balish M.F. Mycoplasma pneumoniae biofilms grown in vitro: traits associated with persistence and cytotoxicity // Microbiology (Reading). 2020. Vol.166, Iss.7. P.629–640. https://doi.org/10.1099/mic.0.000928

48. Vu B., Chen M., Crawford R.J., Ivanova E.P. Bacterial extracellular polysaccharides involved in biofilm formation // Molecules. 2009. Vol.14. P.2535–2554. https://doi.org/10.3390/molecules14072535

49. Feng M., Schaff A.S., Cuadra Aruguete S.A., Riggs H.E., Distelhorst S.L., Balish M.F. Development of Mycoplasma pneumoniae biofilms in vitro and the limited role of motility // International Journal of Medical Microbiology. 2018. Vol.308, Iss.3. P.324–334. https://doi.org/10.1016/j.ijmm.2018.01.007

50. Citti C., Dordet-Frisoni E., Nouvel L.X., Kuo C.H., Baranowski E. Horizontal gene transfers in mycoplasmas (Mollicutes) // Curr. Issues Mol. Biol. 2018. Vol.29. P.3–22. https://doi.org/10.21775/cimb.029.003

51. Wehrl W., Brinkmann V., Jungblut P.R., Meyer T.F., Szczepek A.J. From the inside out-processing of the Chlamydial autotransporter PmpD and its role in bacterial adhesion and activation of human host cells // Mol. Microbiol. 2004. Vol.51, Iss.2. P.319–334. https://doi.org/10.1046/j.1365-2958.2003.03838.x

52. Luczak S.E.T., Smits S.H.J., Decker C., Nagel-Steger L., Schmitt L., Hegemann J.H. The Chlamydia pneumoniae adhesin Pmp21 forms oligomers with adhesive properties // J. Biol. Chem. 2016. Vol.291, Iss.43. P.22806–22818. https://doi.org/10.1074/jbc.M116.728915

53. Jury B., Fleming C., Huston W.M., Luu L.D.W. Molecular pathogenesis of Chlamydia trachomatis // Front. Cell. Infect. Microbiol. 2023. Vol.13. Article number:1281823. https://doi.org/10.3389/fcimb.2023.1281823

54. Guillot L., Nathan N., Tabary O., Thouvenin G., Le Rouzic P., Corvol H., Amselem S., Clement A. Alveolar epithelial cells: master regulators of lung homeostasis // Int. J. Biochem. Cell Biol. 2013. Vol.45, Iss.11. P.2568–2573. https://doi.org/10.1016/j.biocel.2013.08.009

55. Allard B., Panariti A., Martin J.G. Alveolar macrophages in the resolution of inflammation, tissue repair, and tolerance to infection // Front. Immunol. 2018. Vol.9. Article number:1777. https://doi.org/10.3389/fimmu.2018.01777

56. Zhang P., Summer W.R., Bagby G.J., Nelson S. Innate immunity and pulmonary host defense // Immunol. Rev. 2000. Vol.173. P.39–51. https://doi.org/10.1034/j.1600-065X.2000.917306.x

57. Akira S., Uematsu S., Takeuchi O.J.C. Pathogen recognition and innate immunity // Cell. 2006. Vol.124, Iss.4. P.783–801. https://doi.org/10.1016/j.cell.2006.02.015

58. Bourdonnay E., Zaslona Z., Penke L.R.K., Speth J.M., Schneider D.J., Przybranowski S., Swanson J.A., Mancuso P., Freeman C.F., Curtis J.L., Peters-Golden M. Transcellular delivery of vesicular SOCS proteins from macrophages to epithelial cells blunts inflammatory signaling // J. Exp. Med. 2015. Vol.212, Iss.5. P.729–742. https://doi.org/10.1084/jem.20141675

59. Ding S., Wang X., Chen W., Fang Y., Liu B., Liu Y., Fei G., Wang L. Decreased interleukin-10 responses in children with severe Mycoplasma pneumoniae pneumonia // PloS One. 2016. Vol.11, Iss.1. Article number:e0146397. https://doi.org/10.1371/journal.pone.0146397

60. Wu Q., Martin R.J., Rino J.G., Breed R., Torres R.M., Chu H.W. IL-23-dependent IL-17 production is essential in neutrophil recruitment and activity in mouse lung defense against respiratory Mycoplasma pneumoniae infection // Microbes Infect. 2007. Vol.9, Iss.1. P.78–86. https://doi.org/10.1016/j.micinf.2006.10.012

61. Hoegl S., Bachmann M., Scheiermann P., Goren I., Hofstetter C., Pfeilschifter J., Zwissler B., Muhl H. Protective properties of inhaled IL-22 in a model of ventilator-induced lung injury // Am. J. Respir. Cell Mol. Biol. 2011. Vol.44, Iss.3. P.369–376. https://doi.org/10.1165/rcmb.2009-0440OC

62. Roan F., Obata-Ninomiya K., Ziegler S.F. Epithelial cell–derived cytokines: more than just signaling the alarm // J. Clin. Invest. 2019. Vol.129, Iss.4. P.1441–1451. https://doi.org/10.1172/JCI124606

63. Gauvreau G.M., Bergeron C., Boulet L., Cockcroft D.W., Côté A., Davis B.E., Leigh R., Myers I., O'Byrne P.M., Sehmi R. Sounding the alarmins – the role of alarmin cytokines in asthma // Allergy. 2023. Vol.78, Iss.2. P.402–417. https://doi.org/10.1111/all.15609

64. Habib N, Pasha M.A., Tang D.D. Current understanding of asthma pathogenesis and biomarkers // Cells. 2022. Vol.11, Iss.17. Article number:2764. https://doi.org/10.3390/cells11172764


Рецензия

Для цитирования:


Манукян А.С., Приходько А. Механизмы повреждающего воздействия атипичных возбудителей на респираторный эпителий: инфекционная и постинфекционная гиперреактивность дыхательных путей у детей. Бюллетень физиологии и патологии дыхания. 2025;(95):149-160. https://doi.org/10.36604/1998-5029-2025-95-149-160

For citation:


Manukyan A.S., Prikhodko A.G. Mechanisms of damaging effects of atypical pathogens on respiratory epithelium: infectious and post-infectious airway hyperresponsiveness in children. Bulletin Physiology and Pathology of Respiration. 2025;(95):149-160. (In Russ.) https://doi.org/10.36604/1998-5029-2025-95-149-160

Просмотров: 111


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1998-5029 (Print)