Bitter taste receptors TAS2R as promising targets in personalised therapy of asthma
https://doi.org/10.36604/1998-5029-2025-97-137-151
Abstract
This review summarises current data on the role of ectopic bitter-taste receptors (TAS2R) in the pathogenesis of asthma within a personalised-therapy framework. TAS2R expressed in airway epithelium, airway smoothmuscle cells and immunocompetent cells participate in key inflammatory pathways and regulate bronchial tone. Receptor activation induces airway smooth-muscle relaxation through signalling cascades that are independent of β2-adrenergic receptors and cAMP, maintaining efficacy when β2-agonist sensitivity is reduced. In the T2-high endotype, TAS2R suppress IL-4, IL-5 and IL-13, thereby attenuating eosinophilic inflammation and mast-cell degranulation. In non-T2 asthma, TAS2R inhibit pro-inflammatory mediators (IL-17, IL-8/CXCL8, TNF-α) and curb neutrophil and macrophage activity. Consequently, TAS2R are viewed as promising pharmacological targets, particularly for difficult-to-control asthma resistant to inhaled glucocorticosteroids. The literature already cites compounds with TAS2R-agonist activity, and the search for novel endogenous agonists is ongoing. The evidence underscores the need for further studies to clarify TAS2R molecular mechanisms, evaluate TAS2R-oriented therapy across asthma endotypes, and assess the clinical efficacy and safety of agents designed to personalise treatment based on the genetic and functional characteristics of these receptors.
Keywords
About the Author
A. V. KonevRussian Federation
Andrey V. Konev, Postgraduate student, Junior Staff Scientist, Laboratory of Mechanisms of Virus-Associated Developmental Pathology of Respiration
22 Kalinina Str., Blagoveshchensk, 675000
References
1. Global initiative for asthma (GINA). Global strategy for asthma management and prevention. (Update 2025). Available at: https://ginasthma.org/2025-gina-main-report
2. Byrwa-Hill B.M., Morphew T.L., Presto A.A., Fabisiak J.P., Wenzel S.E. Living in environmental justice areas worsens asthma severity and control: differential interactions with disease duration, age at onset, and pollution. J. Allergy Clin. Immunol. 2023; 152(5):1321–1329.e5. https://doi.org/10.1016/j.jaci.2023.04.015
3. Perel’man Yu.M., Perel’man N.L., Kolosov V.P. [Quality of life of patients with bronchial asthma]. Vladivostok: Dal’nauka; 2024 (in Russian). ISBN 978-5-8044-1738-4.
4. Fedoseev G.B. [Current view on the causes, course and treatment of bronchial asthma]. Leningrad: «1 LMI im. akad. I.P.Pavlova», 1982 (in Russian).
5. Lai K., Zhan W., Wu F., Zhang Y., Lin L., Li W., Yi F., Jiang Z., Dai Y., Li S., Lin J., Yuan Y., Jiang Y., Qiu C., Zhao L., Chen M., Qiu Z., Li H., Chen R., Luo W., Xie J., Guo C., Jiang M., Yang X., Shi G., Sun D., Chen R., Chung K.F., Shen H., Zhong N. Clinical and inflammatory characteristics of the Chinese APAC cough variant asthma cohort. Front. Med. (Lausanne) 2022; 8:807385. https://doi.org/10.3389/fmed.2021.807385
6. Ibisheva A.Kh., Shakhgireeva M.R., Khildikharoeva A.B., Uspanova L.S., Shamsadova S.A., Dzhabrailova L.V. [Bronchial asthma in the era of personalized medicine]. Siberian Scientific Medical Journal 2024; 44(6):41–47 (in Russian). https://doi.org/10.18699/SSMJ20240604
7. Fayzullina R.M., Viktorov V.V., Gafurova R.R. [Personalised medicine in bronchial asthma: current concepts and prospects]. Avicenna Bulletin 2021; 23(3):418–431 (in Russian). https://doi.org/10.25005/2074-0581-2021-23-3-418-431
8. Ray A., Das J., Wenzel S.E. Determining asthma endotypes and outcomes: complementing existing clinical practice with modern machine learning. Cell Rep. Med. 2022; 3(12):100857. https://doi.org/10.1016/j.xcrm.2022.100857
9. Avdeev S.N., Volkova O.A., Demko I.V., Ignatova G.L., Leshchenko I.V., Kanukova N.A., Kudelya L.M., Nevzorova V.A., Nedashkovskaya N.G., Ukhanova O.P., Shulzhenko L.V., Fassakhov R.S. [Severe bronchial asthma patient care organization in various regions of the Russian Federation. From endotypes and phenotypes of bronchial asthma to personalized choice of therapy]. Terapevtičeskij arkhiv 2020; 92(2):119–123 (in Russian). https://doi.org/10.26442/00403660.2020.02.000555
10. Bourdin A., Brusselle G., Couillard S., Fajt M.L., Heaney L.G., Israel E., McDowell P.J., Menzies-Gow A., Martin N., Mitchell P.D., Petousi N., Quirce S., Schleich F., Pavord I.D. Phenotyping of severe asthma in the era of broad-acting anti-asthma biologics. J. Allergy Clin. Immunol. Pract. 2024; 12(4):809–823. https://doi.org/10.1016/j.jaip.2024.01.023
11. Chung K.F., Dixey P., Abubakar-Waziri H., Bhavsar P., Patel P.H., Guo S., Ji Y. Characteristics, phenotypes, mechanisms and management of severe asthma. Chin. Med. J. 2022; 135(10):1141–1155. https://doi.org/10.1097/CM9.0000000000001990
12. Deshpande D.A., Wang W.C., McIlmoyle E.L., Robinett K.S., Schillinger R.M., An S.S., Sham J.S.K., Liggett S.B. Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction. Nat. Med. 2010; 16(11):1299–1304. https://doi.org/10.1038/nm.2237
13. Harmon C.P., Deng D., Breslin P.A.S. Bitter taste receptors (T2Rs) are sentinels that coordinate metabolic and immunological defense responses. Curr. Opin. Physiol. 2021; 20:70–76. https://doi.org/10.1016/j.cophys.2021.01.006
14. Lee R.J., Cohen N.A. Bitter and sweet taste receptors in the respiratory epithelium in health and disease. J. Mol. Med. (Berl.) 2014; 92(12):1235–1244. https://doi.org/10.1007/s00109-014-1222-6
15. Grassin-Delyle S., Abrial C., Fayad-Kobeissi S., Brollo M., Faisy C., Alvarez J.C., Naline E., Devillier P. The expression and relaxant effect of bitter taste receptors in human bronchi. Respir. Res. 2013; 14(1):134. https://doi.org/10.1186/1465-9921-14-134
16. Carey R.M., Lee R.J. Taste receptors in upper airway innate immunity. Nutrients 2019; 11(9):2017. https://doi.org/10.3390/nu11092017
17. Martens K., Steelant B., Bullens D.M.A. Taste receptors: the gatekeepers of the airway epithelium. Cells 2021; 10(11):2889. https://doi.org/10.3390/cells10112889
18. Liggett S.B. Bitter taste receptors on airway smooth muscle as targets for novel bronchodilators. Expert Opin. Ther. Targets 2013; 17(6):721–731. https://doi.org/10.1517/14728222.2013.782395
19. Kim D., Strzelinski H.R., Liggett S.B. TAS2R5 screening reveals biased agonism that fails to evoke internalization and downregulation resulting in attenuated desensitization. PLoS One 2025; 20(2):e0315820. https://doi.org/10.1371/journal.pone.0315820
20. Tuzim K., Korolczuk A. An update on extra-oral bitter taste receptors. J. Transl. Med. 2021; 19(1):440. https://doi.org/10.1186/s12967-021-03067-y
21. Lang T., Di Pizio A., Risso D., Drayna D., Behrens M. Activation profile of TAS2R2, the 26th human bitter taste receptor. Mol. Nutr. Food Res. 2023; 67(11):e2200775. https://doi.org/10.1002/mnfr.202200775
22. Risso D., Behrens M., Sainz E., Meyerhof W, Drayna D. Probing the evolutionary history of human bitter taste receptor pseudogenes by restoring their function. Mol. Biol. Evol. 2017; 34(7):1587–1595. https://doi.org/10.1093/molbev/msx097
23. Zhang M., Chen T., Lu X., Lan X., Chen Z., Lu S. G protein-coupled receptors (GPCRs): advances in structures, mechanisms and drug discovery. Signal Transduct. Target. Ther. 2024; 9(1):88. https://doi.org/10.1038/s41392-024-01803-6
24. Cannariato M., Fanunza R., Zizzi E.A., Miceli M., Di Benedetto G., Deriu M.A., Pallante L. Exploring TAS2R46 biomechanics through molecular dynamics and network analysis. Front. Mol. Biosci. 2024; 11:1473675. https://doi.org/10.3389/fmolb.2024.1473675
25. Woo J.A., Castaño M., Kee T.R., Lee J., Koziol-White C.J., An S.S., Kim D., Kang D.E., Liggett S.B. A Par3/LIM kinase/cofilin pathway mediates human airway smooth muscle relaxation by TAS2R14. Am. J. Respir. Cell Mol. Biol. 2023; 68(4):417–429. https://doi.org/10.1165/rcmb.2022-0303OC
26. Nayak A.P., Shah S.D., Michael J.V., Deshpande D.A. Bitter taste receptors for asthma therapeutics. Front. Physiol. 2019; 10:884. https://doi.org/10.3389/fphys.2019.00884
27. Gaida M.M., Dapunt U., Hänsch G.M. Sensing developing biofilms: the bitter receptor T2R38 on myeloid cells. Pathog. Dis. 2016; 74(3):ftw004. https://doi.org/10.1093/femspd/ftw004
28. Meyerhof W., Batram C., Kuhn C., Brockhoff A., Chudoba E., Bufe B., Appendino G., Behrens M. The molecular receptive ranges of human TAS2R bitter taste receptors. Chem. Senses. 2010; 35(2):157–170. https://doi.org/10.1093/chemse/bjp092
29. Grassin-Delyle S., Salvator H., Mantov N., Abrial C., Brollo M., Faisy C., Naline E., Couderc L.J., Devillier P. Bitter taste receptors (TAS2Rs) in human lung macrophages: receptor expression and inhibitory effects of TAS2R agonists. Front. Physiol. 2019; 10:1267. https://doi.org/10.3389/fphys.2019.01267
30. Behrens M. The growing complexity of human bitter taste perception. J. Agric. Food Chem. 2024; 2(26):14530–14534. https://doi.org/10.1021/acs.jafc.4c02465
31. Roelse M., Krasteva N., Pawlizak S., Mai M.K., Jongsma M.A. Tongue-on-a-chip: parallel recording of sweet and bitter receptor responses to sequential injections of pure and mixed sweeteners. J. Agric. Food Chem. 2024; 72(28):15854– 15864. https://doi.org/10.1021/acs.jafc.4c00815
32. Talmon M., Pollastro F., Fresu L.G. The complex journey of the calcium regulation downstream of TAS2R activation. Cells 2022; 11(22):3638. https://doi.org/10.3390/cells11223638
33. Richter P., Andersen G., Kahlenberg K., Mueller A.U., Pirkwieser P., Boger V., Somoza V. Sodium-permeable ion channels TRPM4 and TRPM5 are functional in human gastric parietal cells in culture and modulate the cellular response to bitter-tasting food constituents. J. Agric. Food Chem. 2024; 72(9):4906–4917. https://doi.org/10.1021/acs.jafc.3c09085
34. Yuan G., Jing Y., Wang T., Fernandes V.S., Xin W. The bitter taste receptor agonist-induced negative chronotropic effects on the Langendorff-perfused isolated rat hearts. Eur. J. Pharmacol. 2020; 876:173063. https://doi.org/10.1016/j.ejphar.2020.173063
35. Kim D., Cho S., Castaño M.A., Panettieri R.A., Woo J.A., Liggett S.B. Biased TAS2R bronchodilators inhibit airway smooth muscle growth by downregulating phosphorylated extracellular signal-regulated kinase 1/2. Am. J. Respir. Cell Mol. Biol. 2019; 60(5):532–540. https://doi.org/10.1165/rcmb.2018-0189OC
36. Gopallawa I., Freund J.R., Lee R.J. Bitter taste receptors stimulate phagocytosis in human macrophages through calcium, nitric oxide, and cyclic-GMP signaling. Cell. Mol. Life Sci. 2021; 78(1):271–286. https://doi.org/10.1007/s00018-020-03494-y
37. Agarwal S.L., Deshmankar B.S., Bhargava V. Chloroquine in bronchial asthma. J. Pharm. Pharmacol. 1963; 15(10):693–696. https://doi.org/10.1111/j.2042-7158.1963.tb12862.x
38. Malki A., Fiedler J., Fricke K., Ballweg I., Pfaffl M.W., Krautwurst D. Class I odorant receptors, TAS1R and TAS2R taste receptors, are markers for subpopulations of circulating leukocytes. J. Leukoc. Biol. 2015; 97(3):533–545. https://doi.org/10.1189/jlb.2A0714-331RR
39. Kook J.H., Kim H.K., Kim H.J., Kim K.W., Kim T.H., Kang K.R., Oh D.J., Lee S.H. Increased expression of bitter taste receptors in human allergic nasal mucosa and their contribution to the shrinkage of human nasal mucosa. Clin. Exp. Allergy. 2016; 46(4):584–601. https://doi.org/10.1111/cea.12727
40. Orsmark-Pietras C., James A., Konradsen J.R., Nordlund B., Söderhäll C., Pulkkinen V., Pedroletti C., Daham K., Kupczyk M., Dahlén B., Kere J., Dahlén S.E., Hedlin G., Melén E. Transcriptome analysis reveals upregulation of bitter taste receptors in severe asthmatics. Eur. Respir. J. 2013; 42(1):65–78. https://doi.org/10.1183/09031936.00077712
41. Ni K., Guo J., Bu B., Pan Y., Li J., Liu L., Luo M., Deng L. Naringin as a plant-derived bitter tastant promotes proliferation of cultured human airway epithelial cells via activation of TAS2R signaling. Phytomedicine 2021; 84:153491. https://doi.org/10.1016/j.phymed.2021.153491
42. McMahon D.B., Kuek L.E., Johnson M.E., Johnson P.O., Horn R.L.J., Carey R.M., Adappa N.D., Palmer J.N., Lee R.J. The bitter end: T2R bitter receptor agonists elevate nuclear calcium and induce apoptosis in non-ciliated airway epithelial cells. Cell Calcium 2022; 101:102499. https://doi.org/10.1016/j.ceca.2021.102499
43. Sharma P., Yi R., Nayak A.P., Wang N., Tang F., Knight M.J., Pan S., Oliver B., Deshpande D.A. Bitter taste receptor agonists mitigate features of allergic asthma in mice. Sci. Rep. 2017; 7:46166. https://doi.org/10.1038/srep46166
44. Izuhara K., Arima K., Yasunaga S. IL-4 and IL-13: their pathological roles in allergic diseases and their potential in developing new therapies. Curr. Drug Targets Inflamm. Allergy 2002; 1(3):263–269. https://doi.org/10.2174/1568010023344661
45. Makita K., Mikami Y., Matsuzaki H., Miyashita N., Takeshima H., Noguchi S., Horie M., Urushiyama H., Iikura M., Hojo M., Nagase T., Yamauchi Y. Mechanism of periostin production in human bronchial smooth muscle cells. Int. Arch. Allergy Immunol. 2018; 175(1–2):26–35. https://doi.org/10.1159/000485892
46. Ekoff M., Choi J.H., James A., Dahlén B., Nilsson G., Dahlén S.E. Bitter taste receptor (TAS2R) agonists inhibit IgE-dependent mast cell activation. J. Allergy Clin. Immunol. 2014; 134(2):475–478. https://doi.org/10.1016/j.jaci.2014.02.029
47. Naumov D.E., Gassan D.A., Kotova O.O., Sheludko E.G., Afanas’eva E.Yu., Konev A.V., Perel’man Yu.M. [Effect of TAS2R20 gene polymorphisms on the development and course of bronchial asthma]. Bûlleten' fiziologii i patologii dyhaniâ = Bulletin Physiology and Pathology of Respiration 2024; 94:40–50 (in Russian). https://doi.org/10.36604/1998-5029-2024-94-40-50
48. Kraposhina A.Yu., Sobko E.A., Demko I.V., Katser A.B., Kazmerchuk O.V., Abramov Yu.I. [Current view on bronchial asthma with fixed obstruction]. Terapevtičeskij arkhiv 2021; 93(3):337–342 (in Russian). https://doi.org/10.26442/00403660.2021.03.200661
49. Habib N., Pasha M.A., Tang D.D. Current understanding of asthma pathogenesis and biomarkers. Cells 2022; 11(17):2764. https://doi.org/10.3390/cells11172764
50. Jalševac F., Segú H., Balaguer F., Ocaña T., Moreira R., Abad-Jordà L., Gràcia-Sancho J., Fernández-Iglesias A., Andres-Lacueva C., Martínez-Huélamo M., Beltran-Debon R., Rodríguez-Gallego E., Terra X., Ardévol A., Pinent M. TAS2R5 and TAS2R38 are bitter taste receptors whose colonic expressions could play important roles in age-associated processes. J. Nutr. Biochem. 2025; 140:109872. https://doi.org/10.1016/j.jnutbio.2025.109872
51. Yang M., Kumar R.K., Hansbro P.M., Foster P.S. Emerging roles of pulmonary macrophages in driving the development of severe asthma. J. Leukoc. Biol. 2012; 91(4):557–569. https://doi.org/10.1189/jlb.0711357
52. Wölfle U., Haarhaus B., Schempp C.M. Amarogentin displays immunomodulatory effects in human mast cells and keratinocytes. Mediators Inflamm. 2015; 2015:630128. https://doi.org/10.1155/2015/630128
53. Tran H.T.T., Herz C., Ruf P., Stetter R., Lamy E. Human T2R38 bitter taste receptor expression in resting and activated lymphocytes. Front. Immunol. 2018; 9:2949. https://doi.org/10.3389/fimmu.2018.02949
54. Maurer S., Wabnitz G.H., Kahle N.A., Stegmaier S., Prior B., Giese T., Gaida M.M., Samstag Y., Hänsch G.M. Tasting Pseudomonas aeruginosa biofilms: human neutrophils express the bitter receptor T2R38 as sensor for the quorum sensing molecule N-(3-oxododecanoyl)-L-homoserine lactone. Front. Immunol. 2015; 6:369. https://doi.org/10.3389/fimmu.2015.00369
55. Vidaillac C., Chotirmall S.H. Pseudomonas aeruginosa in bronchiectasis: infection, inflammation, and therapies. Expert Rev. Respir. Med. 2021; 15(5):649–662. https://doi.org/10.1080/17476348.2021.1906225
56. Lee R.J., Kofonow J.M., Rosen P.L., Siebert A.P., Chen B., Doghramji L., Xiong G., Adappa N.D., Palmer J.N., Kennedy D.W., Kreindler J.L., Margolskee R.F., Cohen N.A. Bitter and sweet taste receptors regulate human upper respiratory innate immunity. J. Clin. Invest. 2014; 124(3):1393–1405. https://doi.org/10.1172/JCI72094
57. Kobayashi D., Watarai T., Ozawa M., Kanda Y., Saika F., Kiguchi N., Takeuchi A., Ikawa M., Matsuzaki S., Katakai T. Tas2R signaling enhances mouse neutrophil migration via a ROCK-dependent pathway. Front. Immunol. 2022; 13:973880. https://doi.org/10.3389/fimmu.2022.973880
58. Aoki M., Takao T., Takao K., Koike F., Suganuma N. Lower expressions of the human bitter taste receptor TAS2R in smokers: reverse transcriptase-polymerase chain reaction analysis. Tob. Induc. Dis. 2014; 12:12. https://doi.org/10.1186/1617-9625-12-12
59. Tran H.T.T., Stetter R., Herz C., Spöttel J., Krell M., Hanschen F.S., Schreiner M., Rohn S., Behrens M., Lamy E. Allyl isothiocyanate: a TAS2R38 receptor-dependent immune modulator at the interface between personalized medicine and nutrition. Front. Immunol. 2021; 12:669005. https://doi.org/10.3389/fimmu.2021.669005
60. Jeruzal-Świątecka J., Borkowska E.M., Borkowska M., Pietruszewska W. TAS2R38 bitter taste receptor polymor phisms in patients with chronic rhinosinusitis with nasal polyps: preliminary data in Polish population. Biomedicines 2024; 12(1):168. https://doi.org/10.3390/biomedicines12010168
61. Calancie L., Keyserling T.C., Smith Taillie L., Robasky K., Patterson C., Ammerman A.S., Schisler J.C. TAS2R38 predisposition to bitter taste associated with differential changes in vegetable intake in response to a community-based dietary intervention. G3 (Bethesda) 2018; 8(6):2107–2119. https://doi.org/10.1534/g3.118.300547
62. Shore S.A. Obesity, airway hyperresponsiveness, and inflammation. J. Appl. Physiol. 2010; 108(3):735–743. https://doi.org/10.1152/japplphysiol.00749.2009
63. Cancello R., Micheletto G., Meta D., Lavagno R., Bevilacqua E., Panizzo V., Invitti C. Expanding the role of bitter taste receptor in extra oral tissues: TAS2R38 is expressed in human adipocytes. Adipocyte 2020; 9(1):7–15. https://doi.org/10.1080/21623945.2019.1709253
64. Liszt K.I., Wang Q., Farhadipour M., Segers A., Thijs T., Nys L., Deleus E., Tack J., Depoortere I. Human intestinal bitter taste receptors regulate innate immune responses and metabolic regulators in obesity. J. Clin. Invest. 2022; 132(3):e144828. https://doi.org/10.1172/JCI144828
65. Foschino Barbaro M.P., Costa V.R., Resta O., Prato R., Spanevello A., Palladino G.P., Martinelli D., Carpagnano G.E. Menopausal asthma: a new biological phenotype? Allergy 2010; 65(10):1306–1312. https://doi.org/10.1111/j.1398-9995.2009.02314.x
66. Trivedi S., Deering-Rice C.E., Aamodt S.E., Huecksteadt T.P., Myers E.J., Sanders K.A., Paine R. III, Warren K.J. Progesterone amplifies allergic inflammation and airway pathology in association with higher lung ILC2 responses. Am. J. Physiol. Lung Cell. Mol. Physiol. 2024; 327(1):L65–L78. https://doi.org/10.1152/ajplung.00207.2023
67. Yung J.A., Fuseini H., Newcomb D.C. Hormones, sex, and asthma. Ann. Allergy Asthma Immunol. 2018; 120(5):488–494. https://doi.org/10.1016/j.anai.2018.01.016
68. Lossow K., Hübner S., Roudnitzky N., Slack J.P., Pollastro F., Behrens M., Meyerhof W. Comprehensive analysis of mouse bitter taste receptors reveals different molecular receptive ranges for orthologous receptors in mice and humans. J. Biol. Chem. 2016; 291(29):15358–15377. https://doi.org/10.1074/jbc.M116.718544
69. Ziegler F., Steuer A., Di Pizio A., Behrens M. Physiological activation of human and mouse bitter taste receptors by bile acids. Commun. Biol. 2023; 6(1):612. https://doi.org/10.1038/s42003-023-04971-3
70. Jiang J., Liu S., Qi L., Wei Q., Shi F. Activation of ovarian taste receptors inhibits progesterone production potentially via NO/cGMP and apoptotic signaling. Endocrinology 2021; 162(3):bqaa240. https://doi.org/10.1210/endocr/bqaa240
71. Ni K., Che B., Gu R., Wang C., Xu H., Li H., Cen S., Luo M., Deng L. BitterDB database analysis plus cell stiffness screening identify flufenamic acid as the most potent TAS2R14-based relaxant of airway smooth muscle cells for therapeutic bronchodilation. Theranostics 2024; 14(4):1744–1763. https://doi.org/10.7150/thno.92492
72. Sun S., Yang Y., Xiong R., Ni Y., Ma X., Hou M., Chen L., Xu Z., Chen L, Ji M. Oral berberine ameliorates high-fat diet-induced obesity by activating TAS2Rs in tuft and endocrine cells in the gut. Life Sci. 2022; 311(Pt A):121141. https://doi.org/10.1016/j.lfs.2022.121141
73. Medapati M.R., Singh N., Bhagirath A.Y., Duan K., Triggs-Raine B., Batista E.L. Jr., Chelikani P. Bitter taste receptor T2R14 detects quorum-sensing molecules from cariogenic Streptococcus mutans and mediates innate immune responses in gingival epithelial cells. FASEB J. 2021; 35(3):e21375. https://doi.org/10.1096/fj.202000208R
74. Miller Z.A., Mueller A., Kim T.B., Jolivert J.F., Ma R.Z., Muthuswami S., Park A., McMahon D.B., Nead K.T., Carey R.M., Lee R.J. Lidocaine induces apoptosis in head and neck squamous cell carcinoma through activation of bitter taste receptor T2R14. Cell Rep. 2023; 42(12):113437. https://doi.org/10.1016/j.celrep.2023.113437
75. Waterloo L., Hübner H., Fierro F., Pfeiffer T., Brox R., Löber S., Weikert D., Niv M.Y., Gmeiner P. Discovery of 2-aminopyrimidines as potent agonists for the bitter taste receptor TAS2R14. J. Med. Chem. 2023; 66(5):3499–3521. https://doi.org/10.1021/acs.jmedchem.2c01997
76. Rajagopal S., Shenoy S.K. GPCR desensitization: acute and prolonged phases. Cell. Signal 2018; 41:9–16. https://doi.org/10.1016/j.cellsig.2017.01.024
Review
For citations:
Konev A.V. Bitter taste receptors TAS2R as promising targets in personalised therapy of asthma. Bulletin Physiology and Pathology of Respiration. 2025;(97):137-151. (In Russ.) https://doi.org/10.36604/1998-5029-2025-97-137-151
JATS XML






















