Preview

Bulletin Physiology and Pathology of Respiration

Advanced search

THE CHARACTERISTIC OF MOTION ACTIVITY OF BRONCHIAL MUCOSA CILIATED EPITHELIUM CILIA AT OSMOTIC STRESS IN THE EXPERIMENT IN VITRO

https://doi.org/10.12737/article_593604c09be309.46019930

Abstract

The aim of the research is to study the character and degree of intensiveness of changes in the motion activity of ciliated epithelium (CE) cilia of the bronchial mucosa at immediate effect of hyposmotic stimulus (distilled water) on bronchial biopsy material in the experiment in vitro . 39 patients with bronchial asthma including 14 men and 25 women were examined; all had bronchial fiberoptic scope examination with biopsy of middle lobe bronchus mucosa. For intravital analysis of functional activity of CE cilia the biopsy material was put into the chamber with Hank’s solution at indoor temperature (+25°С). The registration of the motion activity of CE cilia was done with the help of the microsope, the camera with in-built highly sensitive digital full-frame matrix of high definition and a computer. The recording of CE cilia beating was done immediately after the biopsy material was put on the object-plate in the Hank’s solution. Modeling of hypoosmotic stress was carried out by adding 0.01 ml of distilled water into 0.01 ml of Hank’s solution with the help of the dispenser; after that there was an immediate recording of cilia beating and it was repeated in the control moments of the experiment in 1, 2, 3 and 4 minutes. It was found out that the beat frequency of CE cilia fluctuated within the range from 12.2 till 2.7 Hz and was on average 8.73±1.27 Hz. When the distilled water was added into Hank’s solution, there was the decrease of cilia beating frequency till 6.51±1.71 Hz (р<0.001). After the 1st minute of the experiment the frequency of beating decreased till 5.94±1.57 Hz (by 9%) in comparison with the initial values of the stress reaction. During the 2nd, 3rd and 4th minutes of observation there was a steady tendency of cilia beating frequency decrease (by 13, 15 and 17%, respectively). By the fourth minute of observation the beating frequency was 5.33±1.29 Hz and was statistically different (р=0.035) from the initial value of stress reaction. Thus the results of the research show intensive changes in the motion activity of cilia at the influence of hyposmotic stimulus on bronchial biopsy material in the experiment in vitro . Obtained data allowed to develop the mathematical model which characterizes the behavior of cilia under osmotic stress.

About the Authors

A. N. Odireev
Far Eastern Scientific Center of Physiology and Pathology of Respiration
Россия


N. S. Bezrukov
Far Eastern Scientific Center of Physiology and Pathology of Respiration
Россия


J. M. Perelman
Far Eastern Scientific Center of Physiology and Pathology of Respiration
Россия


M. M. Shmatok
Far Eastern Scientific Center of Physiology and Pathology of Respiration
Россия


K. F. Kilimichenko
Far Eastern Scientific Center of Physiology and Pathology of Respiration
Россия


A. V. Kolosov
Far Eastern Scientific Center of Physiology and Pathology of Respiration
Россия


E. Yu. Kochegarova
Far Eastern Scientific Center of Physiology and Pathology of Respiration
Россия


References

1. Безруков Н.С., Шматок М.И. Новый способ регистрации активности ресничек мерцательного эпителия дыхательных путей // Материалы IX международной научной конференции «Системный анализ в медицине» (САМ 2015) / под общ. ред. В.П.Колосова. Благовещенск, 2015. С. 50-56.

2. Безруков Н.С., Одиреев А.Н, Шматок М.И. Алгоритмы регистрации движения ресничек мерцательного эпителия // Материалы Х международной научной конференции «Системный анализ в медицине» (САМ 2016) / под общ. ред. В.П.Колосова. Благовещенск, 2016. С.33-36.

3. Колосов В.П., Манаков Л.Г., Кику П.Ф., Полянская Е.В. Заболевания органов дыхания на Дальнем Востоке России: эпидемиологические и социально-гигиенические аспекты. Владивосток: Дальнаука, 2013. 220 с.

4. Перельман Ю.М., Приходько А.Г., Бородин Е.А., Ушакова Е.В. Роль оксидативного стресса в реакции дыхательных путей на гипоосмолярный стимул у больных бронхиальной астмой // Бюллетень физиологии и патологии дыхания. 2014. Вып.54. С.17-22.

5. Хижняк Ю.Ю., Перельман Ю.М., Колосов В.П. Сезонная динамика проходимости и реактивности дыхательный путей у больных бронхиальной астмой в условиях муссонного климата // Тихоокеанский медицинский журнал. 2009. №1. С.82-84.

6. Целуйко С.С., Семенов Д.А., Перельман Ю.М., Одиреев А.Н. Морфофункциональная характеристика слизеобразующих компонентов воздухоносного отдела легких крыс при осмотическом стрессе // Бюллетень физиологии и патологии дыхания. 2015. Вып.57. С.70-76.

7. Черменский А.Г., Гембицкая, Т.Е., Сологуб Т.С., Орлов А.В., Миткина Е.Н., Желенина Л.А., Фаустова М.Е., Шабалин В.В. Изучение функции реснитчатого эпителия у больных муковисцидозом и хронической обструктивной болезнью легких // Пульмонология. 2001. №3. С.53-56.

8. Chilvers M.A., Rutman A., O’Callaghan C. Functional analysis of cilia and ciliated epithelial ultrastructure in healthy children and young adults // Thorax. 2003. Vol.58, №4. Р.333-338.

9. Daviskas E., Rubin B.K. Effect of inhaled dry powder mannitol on mucus and its clearance // Expert. Rev. Respir. Med. 2013. Vol.7. Р.65-75. doi: 10.1586/ers.12.72.

10. Fabbri L.M., Mapp K.E., Hendrick D.J. Comparison of ultrasonically nebulized distilled water and hyperventilation with cold air in asthma // Ann. Allergy. 1984. Vol.53, №2. P.172-177.

11. Fedan J.S., Yuan L.X., Chang V.C., Viola J.O., Cutler D., Pettit L.L. Osmotic regulation of airway reactivity by epithelium // J. Pharmacol. Exp. Ther. 1999. Vol. 289, №2. P.901-910.

12. Goto D.M., Torres G.M., Seguro A.C., Saldiva P.H., Lorenzi-Filho G., Nakagawa N.K. Furosemide impairs nasal mucociliary clearance in humans // Respir. Physiol. Neurobiol. 2010. Vol.170, №3. Р.246-252. doi: 10.1016/j.resp.2010.01.013

13. Grace M.S., Baxter M., Dubuis E., Birrell M.A., Belvisi M.G. Transient receptor potential (TRP) channels in the airway: role in airway disease // Br. J. Pharmacol. 2014. Vol.171, №10. Р.2593-2607. doi: 10.1111/bph.12538

14. Hollborn M., Vogler S., Reichenbach A., Wiedemann P., Bringmann A., Kohen L. Regulation of the hyperosmotic induction of aquaporin 5 and VEGF in retinal pigment epithelial cells: involvement of NFAT5 // Mol. Vis. 2015. Vol.21. P.360-377.

15. Li M.C., Yang G., Zhou X.D., Tseluyko S.S., Perelman J.M. The pathophysiological mechanisms underlying mucus hyper secretion induced by cold temperatures in cigarette smoke-exposed rats // Int. J. Mol. Med. 2014. Vol.33, №1. P. 83-90.

16. Liedke W., Simon S. A possible role for TRPV4 receptors in asthma // Am. J. Physiol. Lung Cell. Mol. Physiol. 2004. Vol.287, №2. L269-L271. doi: 10.1152/ajplung.00153.2004.

17. Luk C.K., Dulfano M.J. Effect of pH, viscosity and ionic-strength changes on ciliary beating frequency of human bronchial explants // Clin. Sci. (Lond.). 1983. Vol.64, №4. Р.449-451. doi: 10.1042/cs0640449

18. Mall M.A. Role of cilia, mucus, and airway surface liquid in mucociliary dysfunction: lessons from mouse models // J. Aerosol Med. Pulm. Drug Deliv. 2008. Vol.21, №1. Р.13-24. doi: 10.1089/jamp.2007.0659

19. Perelman J.M., Goryachkina N.M., Prikhodko A.G., Borodin E.A. Dynamics of oxidative stress parameters in exhaled breath condensate at controller treatment of bronchial asthma in patients with cold airway hyperresponsiveness // Eur. Respir. J. 2011. Vol.38, Suppl.55. P.3264.

20. Pierrou S., Broberg P., O’donnell R.A., Pawlowski K., Virtala R., Lindqvist E., Richter A., Wilson S.J., Angco G., Moller S., Bergstrand H., Koopmann W., Wieslander E., Strömstedt P.E., Holgate S.T., Davies D.E., Lund J., Djukanovic R. Expression of genes involved in oxidative stress responses in airway epithelial cells of smokers with chronic obstructive pulmonary disease // Am. J. Respir. Crit. Care Med. 2007. Vol.175, №6. Р.577-586. doi: 10.1164/rccm.200607-931OC

21. Satir P., Christensen S.T. Overview of structure and function of mammalian cilia // Annu. Rev. Physiol. 2007. Vol.69. Р.377-400. doi: 10.1146/annurev.physiol.69.040705.141236

22. Trout L., King M., Feng W., Inglis S.K., Ballard S.T. Inhibition of airway liquid secretion and its effect on the physical properties of airway mucus // Am. J. Physiol. 1998. Vol.274, №2(Pt1). Р.258-263.

23. Wyatt T.A., Forget M.A., Adams J.M., Sisson J.H. Both cAMP and cGMP are required for maximal ciliary beat stimulation in a cell-free model of bovine ciliary axonemes // Am. J. Physiol Lung Cell. Mol. Physiol. 2005. Vol.288, №3. Р.546-551. doi: 10.1152/ajplung.00107.2004

24. Yaghi A., Dolovich M.B. Airway Epithelial Cell Cilia and Obstructive Lung Disease // Cells. 2016. Vol.5, №4. Р.40. doi:10.3390/cells5040040

25. Yan X., Cao G.M., Wang X.L., Zhou X.D. Study of mucus secretion and aquaporin-5 expression of bronchial epithelium cultured in hypotonic medium // Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 2007. Vol.19, №4. Р.214-216.


Review

For citations:


Odireev A.N., Bezrukov N.S., Perelman J.M., Shmatok M.M., Kilimichenko K.F., Kolosov A.V., Kochegarova E.Yu. THE CHARACTERISTIC OF MOTION ACTIVITY OF BRONCHIAL MUCOSA CILIATED EPITHELIUM CILIA AT OSMOTIC STRESS IN THE EXPERIMENT IN VITRO. Bulletin Physiology and Pathology of Respiration. 2017;(64):29-36. (In Russ.) https://doi.org/10.12737/article_593604c09be309.46019930

Views: 338

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-5029 (Print)