Preview

Бюллетень физиологии и патологии дыхания

Расширенный поиск

МЕТОДЫ АНАЛИЗА ПЕРЕКИСНОГО ОКИСЛЕНИЯ ЛИПИДОВ В МЕДИКО-БИОЛОГИЧЕСКИХ ИССЛЕДОВАНИЯХ

Аннотация

Представлен краткий обзор методов анализа продуктов свободно-радикального перекисного окисления полиненасыщенных жирных кислот, представляющих интерес для медико-биологических исследований состояний, сопровождающихся окислительным стрессом. Перекисное окисление липидов (ПОЛ) является следствием окислительного стресса и выражается в образовании многочисленных продуктов, различающихся по химической структуре, времени жизни, токсичности и биологической активности. Интенсивность ПОЛ существенно возрастает при многих патологических состояниях. Анализ продуктов ПОЛ представляет интерес для оценки уровня окислительного стресса в организме, для исследования токсического, метаболического и регулирующего действия этого процесса на организм, а также в диагностике некоторых заболеваний. Предложенные методы анализа продуктов ПОЛ различаются по специфичности, чувствительности, сложности исполнения и необходимого оборудования. В массовых клинических исследованиях предпочтение отдается менее трудоемким и специфичным методам анализа стабильных продуктов ПОЛ, хотя возрастающее применение физико-химических методов анализа, прежде всего масс-спектрометрии, делает возможным одновременный анализ широкого круга продуктов ПОЛ. Введение в практику высокоспецифичных антител делает иммуноферментный анализ многих крайне минорных и сложно определяемых продуктов ПОЛ рутинным занятием. Достоверность и точность анализа во многом определяются предпринятыми при отборе и хранении проб мерами, предотвращающими распад или дальнейшее образование продуктов ПОЛ в образце.

Об авторе

Эдуард Витальевич Некрасов
Дальневосточный научный центр физиологии и патологии дыхания Сибирского отделения РАМН
Россия


Список литературы

1. Клиническое значение определения показателей оксидативного стресса в конденсате выдыхаемого воздуха у больных бронхиальной астмой / Н.М.Горячкина [и др.] // Бюл. физиол. и патол. дыхания. 2011. Вып.42. С.8–12.

2. Динамика показателей перекисного окисления липидов и антиоксидантной системы у пациентов с болезнью Легга-Кальве-Пертеса на фоне антиоксидантной терапии / Н.В.Захарова [и др.] // Бюл. физиол. и патол. дыхания. 2010. Вып.38. С.66–70.

3. Ишутина Н.А. Мембранные липиды при беременности, осложненной герпес-вирусной инфекцией // Бюл. физиол. и патол. дыхания. 2008. Вып.30. С.41–45.

4. Agarwal R., Chase S.D. Rapid, fluorimetric-liquid chromatographic determination of malondialdehyde in biological samples // J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2002. Vol.775, №1. P.121–126.

5. Analysis of fatty acids // Cyberlipid Center: resource site for lipid studies. URL: http://www.cyberlipid.org/cyberlip/home0001.htm (дата обращения: 13.08.2012).

6. Fatty acid composition of skeletal muscle reflects dietary fat composition in humans / A.Andersson [et al.] // Am. J. Clin. Nutr. 2002. Vol.76, №6. P.1222–1229.

7. Determination of patterns of biologically relevant aldehydes in exhaled breath condensate of healthy subjects by liquid chromatography/atmospheric chemical ionization tandem mass spectrometry / R.Andreoli [et al.] // Rapid Commun. Mass Spectrom. 2003. Vol.17, №7. P.637–645.

8. Leukotriene B4 and 8-isoprostane in exhaled breath condensate of children with episodic and persistent asthma / C.S.Balanzá [et al.] // Investig. Allergol. Clin. Immunol. 2010. Vol.20, №3. P.237–243.

9. Bochkov V.N. Inflammatory profile of oxidized phospholipids // Thromb. Haemost. 2007. Vol.97, №3. P.348–354.

10. Determination of lipid and protein hydroperoxides using the fluorescent probe diphenyl-1-pyrenylphosphine / R.Bou [et al.] // Food Chem. 2010. Vol.123, №3. P.892–900.

11. An inter-laboratory validation of methods of lipid peroxidation measurement in UVA-treated human plasma samples / N.Breusing [et al.] // Free Radic. Res. 2010. Vol.44, №10. P.1203–1215.

12. EIA and GC/MS analysis of 8-isoprostane in EBC of children with problematic asthma / S.Carraro [et al.] // Eur. Respir. J. 2010. Vol.35, №6. P.1364-1369.

13. Conjugated fatty acids // Cyberlipid Center: resource site for lipid studies. URL: http://www.cyberlipid.org/fa/acid0003.htm#1c (дата обращения: 30.10.2012).

14. Bioavailability and antioxidant activity of some food supplements in men and women using the D-ROMs test as a marker of oxidative stress / U.Cornelli [et al.] // J. Nutr. 2001. Vol.131. №12. P.3208–3211.

15. Comparison between exhaled and sputum oxidative stress biomarkers in chronic airway inflammation / M.Corradi [et al.] // Eur. Respir. J. 2004. Vol.24., №6. P.1011–1017.

16. Protein carbonyl groups as biomarkers of oxidative stress / I.Dalle-Donne [et al.] // Clin. Chim. Acta. 2003. Vol.329, №1-2. P.23–38.

17. Esterbauer H., Cheeseman K.H. Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal // Meth. Enzymol. 1990. Vol.186. P.407–421.

18. Esterbauer H., Schaur R.J., Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes // Free Radic. Biol. Med. 1991. Vol.11, №1 P.81–128.

19. Changes in lipoprotein(a), oxidized phospholipids, and LDL subclasses with a low-fat high-carbohydrate diet / N.Faghihnia [et al.] // J. Lipid Res. 2010. Vol.51. №11. P.3324–3330.

20. Breath gas aldehydes as biomarkers of lung cancer / P.Fuchs [et al.] // Int. J. Cancer. 2010. Vol.126, №11. P.2663–2670.

21. Giera M., Lingeman H., Niessen W.M. Recent advancements in the LC- and GC-based analysis of malondialdehyde (MDA): a brief overview // Chromatographia. 2012. Vol.75, №9-10. P.433–440.

22. Importance of the lipid peroxidation biomarkers and methodological aspects for malondialdehyde quantification / D.Grotto [et al.] // Quim. Nova. 2009. Vol.32., №1. P.169–174.

23. Solid-phase microextraction-gas chromatography-mass spectrometry method validation for the determination of endogenous substances: urinary hexanal and heptanal as lung tumor biomarkers / R.Guadagni [et al.] // Anal. Chim. Acta. 2011. Vol.701, №1. P.29–36.

24. Haeggström J.Z., Funk C.D. Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease // Chem. Rev. 2011. Vol.111, №10. P.5866–5898.

25. Total plasma malondialdehyde levels in 16 Taiwanese college students determined by various thiobarbituric acid tests and an improved high-performance liquid chromatography-based method / Y.L.Hong [et al.] // Clin. Biochem. 2000. Vol.33, №8. P.619–625.

26. Isoprostanes-biomarkers of lipid peroxidation: their utility in evaluating oxidative stress and analysis / M.Janicka [et al.] // Int. J. Mol. Sci. 2010. Vol.11., №11. P.4631–4659.

27. Karatas F., Karatepe M., Baysar A. Determination of free malondialdehyde in human serum by high-performance liquid chromatography // Anal. Biochem. 2002. Vol.311, №1. P.76–79.

28. Kawai Y., Takeda S., Terao J. Lipidomic analysis for lipid peroxidation-derived aldehydes using gas chromatography-mass spectrometry // Chem. Res. Toxicol. 2007. Vol.20, №1. P.99–107.

29. Korchazhkina O., Exley C., Spencer S.A. Measurement by reversed-phase high-performance liquid chromatography of malondialdehyde in normal human urine following derivatisation with 2,4-dinitrophenylhydrazine // J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2003. Vol.794, №2. P.353–362.

30. Reaction conditions affecting the relationship between thiobarbituric acid reactivity and lipid peroxides in human plasma / D.Lapenna [et al.] // Free Radic. Biol. Med. 2001. Vol.31, №3. P.331–335.

31. Differential distribution of 4-hydroxynonenal adducts to sulfur and nitrogen residues in blood proteins as revealed using Raney nickel and gas chromatography-mass spectrometry / J.F.Lesgards [et al.] // Free Radic. Biol. Med. 2009. Vol.47, №10. P.1375–1385.

32. Liu W., Morrow J.D., Yin H. Quantification of F2-isoprostanes as a reliable index of oxidative stress in vivo using gas chromatography-mass spectrometry (GC-MS) method // Free Rad. Biol. Med. 2009. Vol.47, №8. P.1101–1107.

33. Lovell M.A., Markesbery W.R. Analysis of aldehydic markers of lipid peroxidation in biological tissues by HPLC with fluorescence detection / K.Hensley, R.A.Floyd (eds.). Methods in Pharmacology and Toxicology: Methods in Biological Oxidative Stress. Totowa, NJ: Humana Press Inc., 2003. P.17–21.

34. Evaluation of Alternate Isotope-Coded Derivatization Assay (AIDA) in the LC-MS/MS analysis of aldehydes in exhaled breath condensate / P.Manini [et al.] // J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2010. Vol.878, №8. P.2616–2622.

35. Medina-Navarro R., Nieto-Aguilar R., Alvares-Aguilar C. Protein conjugated with aldehydes derived from lipid peroxidation as an independent parameter of the carbonyl stress in the kidney damage // Lipids Health Dis. 2011. Vol.10. P.201.

36. Identification and analysis of products formed from phospholipids in the free radical oxidation of human low density lipoproteins / G.L.Milne [et al.] // J. Lipid Res. 2005. Vol.46, №2. P.307–319.

37. Milne G.L., Yin H., Morrow J.D. Human biochemistry of isoprostane pathway // J. Biol. Chem. 2008. Vol.283, №23. P.15533–15537.

38. Morrow J.D., Harris T.M., Roberts L.J. 2nd. Noncyclooxygenase oxidative formation of a series of novel prostaglandins: Analytical ramifications for measurement of eicosanoids // Anal. Biochem. 1990. Vol.184, №1. P.1–10.

39. -Hydroxynonenal: a membrane lipid oxidation product of medicinal interest / G.Poli [et al.] // Med. Res. Rev. 2008. Vol.28, №4. P.569–631.

40. Protti A., Singer M. Oxidative stress and critical illness // Minerva Anestesiol. 2007. Vol.73, №5. P.255–257.

41. -Hydroxy-2-nonenal, a specific lipid peroxidation product, is elevated in lungs of patients with chronic obstructive pulmonary disease / I.Rahman [et al.] // Am. J. Respir. Crit. Care Med. 2002. Vol.166, №4. P.490–495.

42. Proteomic mapping of 4-hydroxynonenal protein modification sites by solid-phase hydrazide chemistry and mass spectrometry / M.R.Roe [et al.] // Anal. Chem. 2007. Vol.79, №10. P.3747–3756.

43. Exhaled cysteinyl-leukotrienes and 8-isoprostane in patients with asthma and their relation to clinical severity / K.Samitas [et al.] // Respir. Med. 2008. Vol.103, №5. P.750-756.

44. Seljeskog E., Hervig T., Mansoor M.A. A novel HPLC method for the measurement of thiobarbituric acid reactive substances (TBARS). A comparison with a commercially available kit // Clin. Biochem. 2006. Vol.39, №9. P.947–954.

45. A comparison of methods for the measurement of 8-isoPGF(2α): a marker of oxidative stress / K.A.Smith [et al.] // Ann. Clin. Biochem. 2011. Vol.48 (Pt 2). P.147–154.

46. Smith W.L., Urade Y., Jakobsson P.J. Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis // Chem. Rev. 2011. Vol.111, №10. P.5821–5865.

47. Södergren E. Lipid peroxidation in vivo. Evaluation and application of methods for measurement // Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine. Uppsala: Tryck & Medier, 2000. 78 p.

48. Advances in methods for determination of biologically relevant lipid peroxidation products / C.M.Spickett [et al.] // Free Radic. Res. 2010. Vol.44, №10. P.1172–1202.

49. Measurement of 4-hydroxynonenal in small volume blood plasma samples: modification of a gas chromatographic–mass spectrometric method for clinical settings / D.Spies-Martin [et al.] // J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2002. Vol.774, №2. P.231–239.

50. Rapid and easy method for monitoring oxidative stress markers in body fluids of patients with asbestos or silica-induced lung diseases / K.Syslová [et al.] // J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2009. Vol.877, №24. P.2477–2486.

51. Specific and sensitive determination of lipid hydroperoxides with chemical derivatization into 1-naphthyldiphenylphosphine oxide and high-performance liquid chromatography / S.Tokumaru [et al.] // Analyt. Chim. Acta. 1995. Vol.307, №1. P.97–102.

52. Oxidative lipidomics of apoptosis: quantitative assessment of phospholipid hydroperoxides in cells and tissues / V.A.Tyurin [et al.] // Methods Mol. Biol. 2010. Vol.610. P.353–374.

53. Uchida K. 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress // Prog. Lipid Res. 2003. Vol.42, №2. P.318–343.

54. Williams T.I., Lovell M.A., Lynn B.C. Analysis of derivatized biogenic aldehydes by LC tandem mass spectrometry // Anal. Chem. 2005. Vol.77, №10. P.3383–3389.

55. Quantitative gas chromatography-mass spectrometry isomer-specific measurement of hydroxy fatty acids in biological samples and food as a marker of lipid peroxidation / R.Wilson [et al.] // Analyt. Biochem. 1997. Vol.248, №1. P.76–85.

56. Lipid peroxidation as determined by plasma isoprostanes is related to disease severity in mild asthma / L.G.Wood [et al.] // Lipids. 2000. Vol.35, №9. P.967–974.

57. Induced sputum 8-isoprostane concentrations in inflammatory airway diseases / L.G.Wood [et al.] // Am. J. Respir. Crit. Care Med. 2005. Vol.171, №5. P.426–430.

58. Yan W., Byrd G.D., Ogden M.W. Quantitation of isoprostane isomers in human urine from smokers and nonsmokers by LC-MS/MS // J. Lipid Res. 2007. Vol.48, №7. P.1607–1617.

59. Yin H., Xu L., Porter N.A. Free radical lipid peroxidation: mechanisms and analysis // Chem. Rev. 2011. Vol.111, №10. P.5944–5972.

60. Direct measurement by single photon counting of lipid hydroperoxides in human plasma and lipoproteins / A.Zamburlini [et al.] // Analyt. Biochem. 1995. Vol.232, №1. P.107–113.

61. Goryachkina N.M., Zhou X.D., Li Q., Borodin E.A., Perelman J.M. Bûlleten' fiziologii i patologii dyhaniyâ 2011; 42:8–12.

62. Zakharova N.V., Dorovskikh V.A., Borozda I.V., Shtarberg M.A. Bûlleten' fiziologii i patologii dyhaniyâ 2010; 38:66–70.

63. Ishutina N.A. Bûlleten' fiziologii i patologii dyhaniyâ 2008; 30:41–45.

64. Agarwal R., Chase S.D. Rapid, fluorimetric-liquid chromatographic determination of malondialdehyde in biological samples. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2002; 775(1):121–126.

65. Analysis of fatty acids. Cyberlipid Center: resource site for lipid studies. Available at: http://www.cyberlipid.org/cyberlip/home0001.htm (accessed 13 August 2012).

66. Andersson A., Nälsén C., Tengblad S., Vessby B. Fatty acid composition of skeletal muscle reflects dietary fat composition in humans. Am. J. Clin. Nutr. 2002; 76(6):1222–1229.

67. Andreoli R., Manini P., Corradi M., Mutti A., Niessen W.M.A. Determination of patterns of biologically relevant aldehydes in exhaled breath condensate of healthy subjects by liquid chromatography/atmospheric chemical ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2003; 17(7):637–645.

68. Balanzá C.S., Aragonés M.A., Mir C.J.C., Ramírez B.J., Iváñez N.R., Soriano N.A., Toledo F.R., Montaner E.A. Leukotriene B4 and 8-isoprostane in exhaled breath condensate of children with episodic and persistent asthma. J. Investig. Allergol. Clin. Immunol. 2010; 20(3):237–243.

69. Bochkov V.N. Inflammatory profile of oxidized phospholipids. Thromb. Haemost. 2007; 97(3):348–354.

70. Bou R., Chen B., Guardiola F., Codony R., Decker E.A. Determination of lipid and protein hydroperoxides using the fluorescent probe diphenyl-1-pyrenylphosphine. Food Chem. 2010; 123(3):892–900.

71. Breusing N., Grune T., Andrisic L., Atalay M., Bartosz G., Biasi F., Borovic S., Bravo L., Casals I., Casillas R., Dinischiotu A., Drzewinska J., Faber H., Fauzi N.M., Gajewska A., Gambini J., Gradinaru D., Kokkola T., Lojek A., Luczaj W., Margina D., Mascia C., Mateos R., Meinitzer A., Mitjavila M.T., Mrakovcic L., Munteanu M.C., Podborska M., Poli G., Sicinska P., Skrzydlewska E., Vina J., Wiswedel I., Zarkovic N., Zelzer S., Spickett C.M. An inter-laboratory validation of methods of lipid peroxidation measurement in UVA-treated human plasma samples. Free Radic. Res. 2010; 44(10):1203–1215.

72. Carraro S., Cogo P.E., Isak I., Simonato M., Corradi M., Carnielli V.P., Baraldi E. EIA and GC/MS analysis of 8-isoprostane in EBC of children with problematic asthma. Eur. Respir. J. 2010; 35(6):1364–1369.

73. Conjugated fatty acids. Cyberlipid Center: resource site for lipid studies. Available at:: http://www.cyberlipid.org/fa/acid0003.htm#1c

74. Cornelli U., Terranova R., Luca S., Cornelli M., Alberti A. Bioavailability and antioxidant activity of some food supplements in men and women using the D-ROMs test as a marker of oxidative stress. J. Nutr. 2001; 131(12):3208–3211.

75. Corradi M., Pignatti P., Manini P., Andreoli R., Goldoni M., Poppa M., Moscato G., Balbi B., Mutti A. Comparison between exhaled and sputum oxidative stress biomarkers in chronic airway inflammation. Eur. Respir. J. 2004; 24(6):1011–1017.

76. Dalle-Donne I., Rossi R., Giustarini D., Milzani A., Colombo R. Protein carbonyl groups as biomarkers of oxidative stress. Clin. Chim. Acta 2003; 329(1-2):23–38.

77. Esterbauer H., Cheeseman K.H. Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Meth. Enzymol. 1990; 186:407–421.

78. Esterbauer H., Schaur R.J., Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med. 1991; 11(1):81–128.

79. Faghihnia N., Tsimikas S., Miller E.R., Witztum J.L., Krauss R.M. Changes in lipoprotein(a), oxidized phospholipids, and LDL subclasses with a low-fat high-carbohydrate diet. J. Lipid Res. 2010: 51(11):3324–3330.

80. Fuchs P., Loeseken C., Schubert J.K., Miekisch W. Breath gas aldehydes as biomarkers of lung cancer. Int. J. Cancer 2010; 126(11):2663–2670.

81. Giera M., Lingeman H., Niessen W.M. Recent advancements in the LC- and GC-based analysis of malondialdehyde (MDA): a brief overview. Chromatographia 2012; 75(1-2):433–440.

82. Grotto D., Maria L.S., Valentini J., Paniz C., Schmitt G., Garcia S.C., Pomblum V.J., Rocha J.B.T., Farina M. Importance of the lipid peroxidation biomarkers and methodological aspects for malondialdehyde quantification. Quim. Nova 2009; 32(1):169–174.

83. Guadagni R., Miraglia N., Simonelli A., Silvestre A., Lamberti M., Feola D., Acampora A., Sannolo N. Solid-phase microextraction-gas chromatography-mass spectrometry method validation for the determination of endogenous substances: urinary hexanal and heptanal as lung tumor biomarkers. Anal. Chim. Acta 2011; 701(1):29–36.

84. Haeggström J.Z., Funk C.D. Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chem. Rev. 2011; 111(10):5866–5898.

85. Hong Y.L., Yeh S.L., Chang C.Y., Hu M.L. Total plasma malondialdehyde levels in 16 Taiwanese college students determined by various thiobarbituric acid tests and an improved high-performance liquid chromatography-based method. Clin. Biochem. 2000; 33(8):619–625.

86. Janicka M., Kot-Wasik A., Kot J., Namieśnik J. Isoprostanes-biomarkers of lipid peroxidation: their utility in evaluating oxidative stress and analysis. Int. J. Mol. Sci. 2010; 11(11):4631–4659.

87. Karatas F., Karatepe M., Baysar A. Determination of free malondialdehyde in human serum by high-performance liquid chromatography. Anal. Biochem. 2002; 311(1):76–79.

88. Kawai Y., Takeda S., Terao J. Lipidomic analysis for lipid peroxidation-derived aldehydes using gas chromatography-mass spectrometry. Chem. Res. Toxicol. 2007; 20(1):99–107.

89. Korchazhkina O., Exley C., Spencer S.A. Measurement by reversed-phase high-performance liquid chromatography of malondialdehyde in normal human urine following derivatisation with 2,4-dinitrophenylhydrazine. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2003; 794(2):353–362.

90. Lapenna D., Ciofani G., Pierdomenico S.D., Giamberardino M.A., Cuccurullo F. Reaction conditions affecting the relationship between thiobarbituric acid reactivity and lipid peroxides in human plasma. Free Radic. Biol. Med. 2001; 31(3):331–335.

91. Lesgards J.F., Frayne I.R., Comte B., Busseuil D., Rhéaume É., Tardif J.C., Rosiers C.D. Differential distribution of 4-hydroxynonenal adducts to sulfur and nitrogen residues in blood proteins as revealed using Raney nickel and gas chromatography-mass spectrometry. Free Radic. Biol. Med. 2009; 47(10):1375–1385.

92. Liu W., Morrow J.D., Yin H. Quantification of F2-isoprostanes as a reliable index of oxidative stress in vivo using gas chromatography-mass spectrometry (GC-MS) method. Free Radic. Biol. Med. 2009; 47(8):1101–1107.

93. Lovell M.A., Markesbery W.R. Analysis of aldehydic markers of lipid peroxidation in biological tissues by HPLC with fluorescence detection. In: Hensley K., Floyd R.A., editors. Methods in Pharmacology and Toxicology: Methods in Biological Oxidative Stress. Totowa, NJ: Humana Press Inc.; 2003: pp.17–21.

94. Manini P., Andreoli R., Sforza S., Dall'Asta C., Galaverna G., Mutti A., Niessen W.M. Evaluation of Alternate Isotope-Coded Derivatization Assay (AIDA) in the LC-MS/MS analysis of aldehydes in exhaled breath condensate. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2010; 878(27):2616–2622.

95. Medina-Navarro R., Nieto-Aguilar R., Alvares-Aguilar C. Protein conjugated with aldehydes derived from lipid peroxidation as an independent parameter of the carbonyl stress in the kidney damage. Lipids Health Dis. 2011; 10:201.

96. Milne G.L., Seal J.R., Havrilla C.M., Wijtmans M., Porter N.A. Identification and analysis of products formed from phospholipids in the free radical oxidation of human low density lipoproteins. J. Lipid Res. 2005; 46(2):307–319.

97. Milne G.L., Yin H., Morrow J.D. Human biochemistry of isoprostane pathway. J. Biol. Chem. 2008; 283(23):15533–15537.

98. Morrow J.D., Harris T.M., Roberts L.J. 2nd. Noncyclooxygenase oxidative formation of a series of novel prostaglandins: аnalytical ramifications for measurement of eicosanoids. Anal. Biochem. 1990; 184(1):1–10.

99. Poli G., Schaur R.J., Siems W.G., Leonarduzzi G. 4-Hydroxynonenal: a membrane lipid oxidation product of medicinal interest. Med. Res. Rev. 2008; 28(4):569–631.

100. Protti A., Singer M. Oxidative stress and critical illness. Minerva Anestesiol. 2007; 73(5):255–257.

101. Rahman I., van Schadewijk A.A.M., Crowther A.J.L., Hiemstra P.S., Stolk J., MacNee W., De Boer W.I. 4-Hydroxy-2-nonenal, a specific lipid peroxidation product, is elevated in lungs of patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2002; 166(4):490–495.

102. Roe M.R., Xie H., Bandhakavi S., Griffin T.J. Proteomic mapping of 4-hydroxynonenal protein modification sites by solid-phase hydrazide chemistry and mass spectrometry. Anal. Chem. 2007; 79(10):3747–3756.

103. Samitas K., Chorianopoulos D., Vittorakis S., Zervas E., Economidou E., Papatheodorou G., Loukides S., Gaga M. Exhaled cysteinyl-leukotrienes and 8-isoprostane in patients with asthma and their relation to clinical severity. Respir. Med. 2008; 103(5):750–756.

104. Seljeskog E., Hervig T., Mansoor M.A. A novel HPLC method for the measurement of thiobarbituric acid reactive substances (TBARS). A comparison with a commercially available kit. Clin. Biochem. 2006; 39(9):947–954.

105. Smith K.A., Shepherd J., Wakil A., Kilpatrick E.S. A comparison of methods for the measurement of 8-isoPGF(2α): a marker of oxidative stress. Ann. Clin. Biochem. 2011; 48(Pt 2):147–154.

106. Smith W.L., Urade Y., Jakobsson P.-J. Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis. Chem. Rev. 2011; 111(10):5821–5865.

107. Södergren E. Lipid peroxidation in vivo. Evaluation and application of methods for measurement. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine. Uppsala: Tryck & Medier; 2000.

108. Spickett C.M., Wiswedel I., Siems W., Zarkovic K., Zarkovic N. Advances in methods for determination of biologically relevant lipid peroxidation products. Free Radic. Res. 2010; 44(10):1172–1202.

109. Spies-Martin D., Sommerburg O., Langhans C.-D., Leichsenring M. Measurement of 4-hydroxynonenal in small volume blood plasma samples: modification of a gas chromatographic–mass spectrometric method for clinical settings. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2002; 774(2):231–239.

110. Syslová K., Kačer P., Kuzma M., Najmanová V., Fenclová Z., Vlčková Š., Lebedová J., Pelclová D. Rapid and easy method for monitoring oxidative stress markers in body fluids of patients with asbestos or silica-induced lung diseases. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2009; 877(24):2477–2486.

111. Tokumaru S., Tsukamoto I., Iguchi H., Kojo S. Specific and sensitive determination of lipid hydroperoxides with chemical derivatization into 1-naphthyldiphenylphosphine oxide and high-performance liquid chromatography. Analyt. Chim. Acta. 1995; 307(1):97–102.

112. Tyurin V.A., Tyurina Y.Y., Ritov V.B., Lysytsya A., Amoscato A.A., Kochanek P.M., Hamilton R., Dekosky S.T., Greenberger J.S., Bayir H., Kagan V.E. Oxidative lipidomics of apoptosis: quantitative assessment of phospholipid hydroperoxides in cells and tissues. Methods Mol. Biol. 2010; 610:353–374.

113. Uchida K. 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog. Lipid Res. 2003; 42(2):318–343.

114. Williams T.I., Lovell M.A., Lynn B.C. Analysis of derivatized biogenic aldehydes by LC tandem mass spectrometry. Anal. Chem. 2005; 77(10):3383–3389.

115. Wilson R., Smith R., Wilson P., Shepherd M.J., Riemersma R.A. Quantitative gas chromatography-mass spectrometry isomer-specific measurement of hydroxy fatty acids in biological samples and food as a marker of lipid peroxidation. Anal. Biochem. 1997; 248(1):76–85.

116. Wood L.G., Fitzgerald D.A., Gibson P.C., Cooper D.M., Garg M.L.Lipid peroxidation as determined by plasma isoprostanes is related to disease severity in mild asthma. Lipids 2000; 35(9):967–974.

117. Wood L.G., Garg M.L., Simpson J.L., Mori T.A., Croft K.D., Wark P.A.B., Gibson P.G. Induced sputum 8-isoprostane concentrations in inflammatory airway diseases. Am. J. Respir. Crit. Care Med. 2005; 171(5):426–430.

118. Yan W., Byrd G.D., Ogden M.W. Quantitation of isoprostane isomers in human urine from smokers and nonsmokers by LC-MS/MS. J. Lipid Res. 2007; 48(7):1607–1617.

119. Yin H., Xu L., Porter N.A. Free radical lipid peroxidation: mechanisms and analysis. Chem. Rev. 2011; 111(10):5944–5972.

120. Zamburlini A., Maiorino M., Barbera P., Roveri A., Ursini F. Direct measurement by single photon counting of lipid hydroperoxides in human plasma and lipoproteins. Anal. Biochem. 1995; 232(1):107–113.


Рецензия

Для цитирования:


Некрасов Э.В. МЕТОДЫ АНАЛИЗА ПЕРЕКИСНОГО ОКИСЛЕНИЯ ЛИПИДОВ В МЕДИКО-БИОЛОГИЧЕСКИХ ИССЛЕДОВАНИЯХ. Бюллетень физиологии и патологии дыхания. 2012;(46):98-108.

For citation:


Nekrasov E.V. METHODS FOR LIPID PEROXIDATION ANALYSIS IN MEDICAL AND BIOLOGICAL RESEARCH. Bulletin Physiology and Pathology of Respiration. 2012;(46):98-108. (In Russ.)

Просмотров: 552


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1998-5029 (Print)