Preview

Bulletin Physiology and Pathology of Respiration

Advanced search

LIPIDS TRANSPORTATION WITHIN FETOPLACENTAL BARRIER WITH THE HELP OF H-FABP LIPID-TRANSFER PROTEINS IN PREGNANT WOMEN WITH THE EXACERBATION OF CYTOMEGALOVIRUS INFECTION IN THE THIRD TRIMESTER OF PREGNANCY

Abstract

The work deals with theoretical conceptions about fat acids transportation as well as personal investigation data. The character of fat acids transportation was studied with the help of lipid- transfer proteins H-FABR in the syncytiotrophoblast of placenta villi at the exacerbation of cytomegalovirus infection in the third trimester of pregnancy. 25 pregnant women in the third trimester of gestation with the exacerbation of cytomegalovirus infection at the growth of antibodies titer of G 1:800 class (the main group) and 20 women who were not sick for the whole period of gestation (the control group) were examined. Antibodies titer of M and G class to cytomegalovirus and avidity index were found by immune-enzyme method; the measurement of lipid-transfer protein content was done at spectrophotometer. The histochemical reaction to find out the activity of peroxidation in the syncytiotrophoblast and umbilical cord blood vessels endothelium was done by Winkler-Schulz method. The quantitative estimation of peroxides was conducted with the computer cytophotometry method. It was found out that at the exacerbation of cytomegalovirus infection in pregnant women in the third trimester of gestation there is a decrease of lipid-transfer proteins into syncytiotrophoblast of placenta villi. There is also a selective transportation of fat acids through inner membrane of syncytiotrophoblast into the fetus umbilical blood. At the exacerbation of cytomegalovirus infection in pregnant women there is a drop of anti-inflammatory fat acids of ω-3 family and vice versa there is an increase of anti-inflammatory acids of ω-6 family and arachidonic acid.

About the Authors

Mikhail T. Lutsenko
Far Eastern Scientific Center of Physiology and Pathology of Respiration SB RAMS
Russian Federation


Inna V. Dovzhikova
Far Eastern Scientific Center of Physiology and Pathology of Respiration SB RAMS
Russian Federation


Irina A. Andrievskaya
Far Eastern Scientific Center of Physiology and Pathology of Respiration SB RAMS
Russian Federation


Nataliya A. Ishutina
Far Eastern Scientific Center of Physiology and Pathology of Respiration SB RAMS
Russian Federation


Ol'ga P. Babenko
Far Eastern Scientific Center of Physiology and Pathology of Respiration SB RAMS
Russian Federation


References

1. Котык А., Яначек К. Мембранный транспорт: пер. с англ. М.: Мир, 1980. 341 с.

2. Титов В.Н. С-реактивный белок – вектор переноса жирных кислот к клеткам, которые непосредственно реализуют синдром системного воспалительного ответа // Клин. лаб. диагностика. 2008. №6. С.3–12

3. Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36 / N.A.Abumrad [et al.] // J. Biol. Chem. 1993. Vol.268, №24. P.17665–17668.

4. Abumrad N.A., Park J.H., Park C.R. Permeation of long-chain fatty acid into adipocytes. Kinetics, specificity, and evidence for involvement of a membrane protein // J. Biol. Chem. 1984. Vol.259, №14. P.8945–8953.

5. Biochemical EFA status of mothers and their neonates after normal pregnancy / M.D.Al [et al.] // Early Hum. Dev. 1990. Vol.24, №3. P.239–248.

6. High polyunsaturated fatty acid, thromboxane A2, and alpha-fetoprotein concentrations at the human feto-maternal interface / C.Benassayag [et al.] // J. Lipid Res. 1997. Vol.38, №2. P.276–286.

7. Berghaus T.M., Demmelmair H., Koletzko B. Fatty acid composition of lipid classes in maternal and cord plasma at birth // Eur. J. Pediatr. 1998. Vol.157, №9.P.763–768.

8. Hypoxia regulates the expression of fatty acid-binding proteins in primary term human trophoblasts / Т.Biron-Shental [et al.] // Am. J. Obstet. Gynecol. 2007. Vol.197, №5. P.511–516.

9. Brown D.A., London E. Functions of lipid rafts in biological membranes // Annu. Rev. Cell Dev. Biol. 1998. Vol.14. P.111–136.

10. Detection and cellular localization of plasma membrane-associated and cytoplasmic fatty acid-binding proteins in human placenta / F.M.Campbell [et al.] // Placenta. 1998. Vol.19, №5-6. P.409–415.

11. Uptake of long chain fatty acids by human placental choriocarcinoma (BeWo) cells: role of plasma membrane fatty acid-binding protein / F.M.Campbell [et al.] // J. Lipid Res. 1997. Vol.38, №12. P.2558–2568.

12. Campbell F.M., Dutta-Roy A.K. Plasma membrane fatty acid-binding protein (FABPpm) is exclusively located in the maternal facing membranes of the human placenta // FEBS Lett. 1995. Vol.375, №3. P.227–230.

13. Plasma membrane fatty-acid-binding protein in human placenta: identification and characterization / F.M.Campbell [et al.] // Biochem. Biophys. Res. Commun. 1995. Vol.209, №3. P.1011–1017.

14. Essential fatty-acids interconversion in the human fetal liver / J.Chambaz [et al.] // Biol. Neonate. 1985. Vol.47, №3. P.136–140.

15. Role of CD36 in membrane transport and utilization of long-chain fatty acids by different tissues / C.T.Coburn [et al.] // J. Mol. Neurosci. 2001. Vol.16, №2-3. P.117–121.

16. Cunningham P., McDermott L. Long chain PUFA transport in human term placenta // J. Nutr. 2009. Vol.139, №4. P.636–639.

17. Dutta-Roy A.K. Cellular uptake of long-chain fatty acids: role of membrane-associated fatty-acid-binding: transport proteins // Cell. Mol. Life Sci. 2000. Vol.57, №10. P.1360–1372.

18. Dutta-Roy A.K. Fatty acid transport and metabolism in the fetoplacental unit and the role of fatty acid-binding proteins // J. Nutr. Biochem. 1997. Vol.8, №10. P.548–557.

19. Dutta-Roy A.K. Transport mechanisms for long-chain polyunsaturated fatty acids in the human placenta // Am. J. Clin. Nutr. 2000. Vol.71, №1(Suppl.). P.315S–322S.

20. Transport of long chain polyunsaturated fatty acids across the human placenta: role of fatty acid-binding proteins / A.K.Dutta-Roy [et al.] // In: Y.S.Huang, D.Mills (eds.). g-Linolenic acid: metabolism and its role in nutrition and medicine. New York: AOCS Press, 1996. P.42–53.

21. Translocation of long chain fatty acids across the plasma membrane - lipid rafts and fatty acid transport proteins / R.Ehehalt [et al.] // Mol. Cell. Biochem. 2006. Vol.284, №1-2. P.135–140.

22. Insulin and fatty acids regulate the expression of the fat droplet-associated protein adipophilin in primary human trophoblasts / U.Elchalal [et al.] // Am. J. Obstet. Gynecol. 2005. Vol.193, №5. P.1716–1723.

23. Edidin M. Lipids on the frontier: a century of cell-membrane bilayers // Nat. Rev. Mol. Сell Biol. 2003. Vol.4, №5. Р.414–418.

24. Gimeno R.E. Fatty acid transport proteins // Curr. Opin. Lipidol. 2007. Vol.18, №3. P.271–276.

25. Haggarty P. Effect of placental function on fatty acid requirements during pregnancy // Eur. J. Clin. Nutr. 2004. Vol.58, №12. P.1559–1570.

26. Effect of maternal polyunsaturated fatty acid concentration on transport by the human placenta / P.Haggarty [et al.] // Biol. Neonate. 1999. Vol.75, №6. P.350–359.

27. Long-chain polyunsaturated fatty acid transport across the perfused human placenta / P.Haggarty [et al.] // Placenta. 1997. Vol.18, №8. P.635–642.

28. Haunerland N.H., Spener F. Fatty acid-binding proteins–insights from genetic manipulations // Prog. Lipid Res. 2004. Vol.43, №4. P.328–349.

29. Fatty acid composition of umbilical arteries and veins: possible implication for the fetal EFA-status / G.Hornstra [et al.] // Lipids. 1989. Vol.24, №6. P.511–517.

30. Hui T.Y., Bernlohr D.A. Fatty acid transporters in animal cells // Front. Biosci. 1997. Vol.2. P.d222–231.

31. Ibrahimi A., Abumrad N.A. Role of CD36 in membrane transport of long-chain fatty acids // Curr. Opin. Clin. Nutr. Metab. Care. 2002. Vol.5, №2. P.139–145.

32. Kamp F., Hamilton J.A. How fatty acids of different chain length enter and leave cells by free diffusion // Prostaglandins Leukot. Essent. Fatty Acids. 2006. Vol.75, №3. P.149–159.

33. Kampf J.P., Cupp D., Kleinfeld A.M. Different mechanisms of free fatty acid flip-flop and dissociation revealed by temperature and molecular species dependence of transport across lipid vesicles // J. Biol. Chem. 2006. Vol.281, №30. P.21566–21574.

34. Klemens С.М., Salari K., Mozurkewich E. Assessing Omega-3 Fatty Acid Supplementation During Pregnancy and Lactation to Optimize Maternal Mental Health and Childhood Cognitive Development //Clin. Lipidology. 2012. Vol.7, №1. P.93–109.

35. Koletzko В., Larqué E., Demmelmair H. Placental transfer of long-chain polyunsaturated fatty acids (LC-PUFA) // J. Perinat. Med. 2007. Vol.35, Suppl.1. P.S5–11.

36. Kurzchalia T.V., Parton R.G. Membrane microdomains and caveolae // Curr. Opin. Cell Biol. 1999. Vol.11, №4. P.424–431.

37. Lager S. Cytokine and lipids in pregnancy – effects on developmental programming and placental nutrient transfer: Doctoral thesis. Gothenburg, Sweden, 2010. 68 p.

38. In vivo investigation of the placental transfer of (13)C-labeled fatty acids in humans / E.Larqué [et al.] // J. Lipid Res. 2003. Vol.44, №1. P.49–55.

39. Docosahexaenoic acid supply in pregnancy affects placental expression of fatty acid transport proteins / E.Larqué [et al.] // Am. J. Clin. Nutr. 2006. Vol.84, №4. P.853–861.

40. Lev S. Non-vesicular lipid transport by lipid-transfer proteins and beyond // Nat. Rev. Mol. Сell Biol. 2010.Vol.11, №10. P.739–750.

41. Placental triglyceride accumulation in maternal type 1 diabetes is associated with increased lipase gene expression / M.L.Lindegaard [et al.] // J. Lipid Res. 2006. Vol.47, №11. P.2581–2588.

42. Gestational and hormonal regulation of human placental lipoprotein lipase / A.L.Magnusson-Olsson [et al.] // J. Lipid Res. 2006. Vol.47, №11. P.2551–2561.

43. Regulation of fatty acid transport protein and fatty acid translocase mRNA levels by endotoxin and cytokines / R.A.Memon [et al.] // Am. J. Physiol. 1998. Vol.274, №2 (Pt 1). P.210–217.

44. Long-chain fatty acid uptake into adipocytes depends on lipid raft function / J.Pohl [et al.] // Biochemistry. 2004. Vol.43, №4. P.4179–4187.

45. FAT/CD36-mediated long-chain fatty acid uptake in adipocytes requires plasma membrane rafts / J.Pohl [et al.] // Mol. Biol. Cell. 2005. Vol.16, №1. P.24–31.

46. Rietveld A., Simons K. The differential miscibility of lipids as the basis for the formation of functional membrane rafts // Biochim. Biophys. Acta. 1998. Vol.1376, №3. P.467–479.

47. Peroxisome proliferator-activated receptor-gamma and retinoid X receptor signaling regulate fatty acid uptake by primary human placental trophoblasts / W.T.Schaiff [et al.] // J. Clin. Endocrinol. Metab. 2005. Vol. 90, №7. P.4267–4275.

48. Schaffer J.E. Fatty acid transport: the roads taken // Am. J. Physiol. Endocrinol. Metab. 2002. Vol.282, №2. P.E239–E246.

49. Schaffer J.E., Lodish H.F. Expression cloning and characterization of a novel adipocyte long chain fatty acid transport protein // Cell. 1994. Vol. 79, №3.P.427–436.

50. Fatty acid composition of serum lipids of mothers and their babies after normal and hypertensive pregnancies / Y.T.van der Schouw [et al.] // Prostaglandin Leukot. Essent. Fatty Acids. 1991. Vol.44, №4. P.247–252.

51. Human placenta metabolizes fatty acids: implications for fetal fatty acid oxidation disorders and maternal liver diseases / P.Shekhawat [et al.] // Am. J. Physiol. Endocrinol. Metab. 2003. Vol.284, №6. P.E1098–E1105.

52. Simons K., Ehehalt R. Cholesterol, lipid rafts, and disease // J. Clin. Invest. 2002. Vol.110, №5. P.597–603.

53. Smathers R.L., Petersen D.R. The human fatty acid-binding protein family: evolutionary divergences and functions // Hum. Genomics. 2011. Vol.5, №3. P.170–191.

54. A new concept of cellular uptake and intracellular trafficking of long-chain fatty acids / W.Stremmel [et al.] // Lipids. 2001. Vol.36, №9. P.981–989.

55. Isolation and partial characterization of a fatty acid binding protein in rat liver plasma membranes / W.Stremmel [et al.] // Proc. Natl. Acad. Sci. USA. 1985. Vol.82, №1. P.4–8.

56. Thomas C.R., Lowy C. The interrelationships between circulating maternal esterified and non-esterified fatty acids in pregnant guinea pigs and their relative contributions to the fetal circulation // J. Dev. Physiol. 1987. Vol.9, №3. P.203–214.

57. Long-chain polyunsaturated fatty acid transport across human placental choriocarcinoma (BeWo) cells / К.A.Tobin [et al.] // Placenta. 2009. Vol.30, №1. P.41–47.

58. Trigatti B.L., Anderson R.G., Gerber G.E. Identification of caveolin-1 as a fatty acid binding protein // Biochem. Biophys. Res. Commun. 1999. Vol.255, №1. P.34–39.

59. Toll A.R. Plasma lipid transfer proteins // J. Lipid Res. 1986. Vol.27. P. 361–367.

60. Further characterization of a novel triacylglycerol hydrolase activity (pH 6.0 optimum) from microvillous membranes from human term placenta / I.J.Waterman [et al.] // Placenta. 2000. Vol.21, №8. P.813–823.

61. Zeng Y., Tao N., Chung K.N., Heuser J.E., Lublin D.M. Endocytosis of oxidized low density lipoprotein through scavenger receptor CD36 utilizes a lipid raft pathway that does not require caveolin-1 // J. Biol. Chem. 2003. Vol.278, №46. P.45931–45936.

62. Zilversmit D., Hughes M. Phospholipid exchange between membranes / In: E.D.Korn (ed.). Methods in membrane biology. New York: Plenum Publishing Corp., 1976.Vol.7. P.211–259.


Review

For citations:


Lutsenko M.T., Dovzhikova I.V., Andrievskaya I.A., Ishutina N.A., Babenko O.P. LIPIDS TRANSPORTATION WITHIN FETOPLACENTAL BARRIER WITH THE HELP OF H-FABP LIPID-TRANSFER PROTEINS IN PREGNANT WOMEN WITH THE EXACERBATION OF CYTOMEGALOVIRUS INFECTION IN THE THIRD TRIMESTER OF PREGNANCY. Bulletin Physiology and Pathology of Respiration. 2013;(47):62-71. (In Russ.)

Views: 127


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-5029 (Print)