Preview

Бюллетень физиологии и патологии дыхания

Расширенный поиск

ТРАНСПОРТ ЖИРНЫХ КИСЛОТ ЧЕРЕЗ МЕМБРАНУ (ОБЗОР ЛИТЕРАТУРЫ)

Аннотация

Докозагексаеновая и арахидоновая кислоты чрезвычайно важны для нормального развития плода во время беременности. Поскольку они не могут быть синтезированы плодом и плацентой, то обеспечение ими происходит путем транспорта через плаценту из материнской крови. В обзоре литературы рассмотрен механизм поступления длинноцепочечных жирных кислот, происходящий по двум путям: пассивная диффузия через мембрану и транспорт с помощью специальных белков. К последним относятся FABPpm/GOT2, FABP, FATP, кавеолин-1 и FAT/CD36. Большой раздел статьи посвящен особенностям поставки жирных кислот при беременности. Он включает в себя три этапа: диссоциация с белковым комплексом, транспорт через плазматическую мембрану и связывание их с внутриклеточными белками. Важную роль в избирательности поступления докозагексаеновой и арахидоновой кислот играют: pFABPpm, локализованный на плазматической мембране материнской стороны плаценты, FATP-1 и FATP-4. FABP направляют жирные кислоты в различные точки внутри синцитиотрофобласта или в плазму пуповины. Сделан вывод, что поступление длинноцепочечных жирных кислот к плоду является результатом комбинированных процессов, протекающих у матери и в фетоплацентарном комплексе.

Об авторах

Инна Викторовна Довжикова
Дальневосточный научный центр физиологии и патологии дыхания Сибирского отделения РАМН
Россия


Михаил Тимофеевич Луценко
Дальневосточный научный центр физиологии и патологии дыхания Сибирского отделения РАМН
Россия


Список литературы

1. Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36 / N.A.Abumrad [et al.] // J. Biol. Chem. 1993. Vol.268, №24. P.17665–17668.

2. Abumrad N.A., Park J.H., Park C.R. Permeation of long-chain fatty acid into adipocytes. Kinetics, specificity, and evidence for involvement of a membrane protein // J. Biol. Chem. 1984. Vol.259, №14. P.8945–8953.

3. Biochemical EFA status of mothers and their neonates after normal pregnancy / M.D.Al [et al.] // Early Hum. Dev. 1990. Vol.24, №3. P.239–248.

4. High polyunsaturated fatty acid, thromboxane A2, and alpha-fetoprotein concentrations at the human feto-maternal interface / C.Benassayag [et al.] // J. Lipid Res. 1997. Vol.38, №2. P.276–286.

5. Berghaus T.M., Demmelmair H., Koletzko B. Fatty acid composition of lipid classes in maternal and cord plasma at birth // Eur. J. Pediatr. 1998. Vol.157, №9.P.763–768.

6. Hypoxia regulates the expression of fatty acid-binding proteins in primary term human trophoblasts/ Т.Biron-Shental [et al.] // Am. J. Obstet. Gynecol. 2007. Vol.197, №5. P.511–516.

7. Alterations in the fatty acid composition of rat brain cells (neurons, astrocytes, and oligodendrocytes) and of subcellular fractions (myelin and synaptosomes) induced by a diet devoid of n23 fatty acids / J.M. Bourre [et al.] // J. Neurochem. 1984. Vol.43, №2. P.342–348.

8. Brown D.A., London E. Functions of lipid rafts in biological membranes // Annu. Rev. Cell Dev. Biol. 1998. Vol.14.P.111–136.

9. Detection and cellular localization of plasma membrane-associated and cytoplasmic fatty acid-binding proteins in human placenta / F.M.Campbell [et al.] // Placenta. 1998. Vol.19, №5-6. P.409–415.

10. Uptake of long chain fatty acids by human placental choriocarcinoma (BeWo) cells: role of plasma membrane fatty acid-binding protein / F.M.Campbell [et al.] // J. Lipid Res. 1997. Vol.38, №12. P.2558–2568.

11. Campbell F.M., Dutta-Roy A.K. Plasma membrane fatty acid-binding protein (FABPpm) is exclusively located in the maternal facing membranes of the human placenta // FEBS Lett. 1995. Vol.375, №3. P.227–230.

12. Plasma membrane fatty-acid-binding protein in human placenta: identification and characterization / F.M.Campbell [et al.] // Biochem. Biophys. Res. Commun. 1995. Vol.209, №3. P.1011–1017.

13. Cha Y.I., Solnica-Krezel L., DuBois R.N. Fishing for prostanoids: deciphering the developmental functions of cyclooxygenase-derived prostaglandins // Dev. Biol. 2006. Vol.289, №2. P.263–272.

14. Essential fatty-acids interconversion in the human fetal liver / J.Chambaz [et al.] // Biol. Neonate. 1985. Vol.47, №3. P.136–140.

15. Role of CD36 in membrane transport and utilization of long-chain fatty acids by different tissues / C.T.Coburn [et al.] // J. Mol. Neurosci. 2001. Vol.16, №2-3. P.117–121.

16. Cunningham P., McDermott L. Long chain PUFA transport in human term placenta // J. Nutr. 2009. Vol.139, №4. P.636–639.

17. Dutta-Roy A.K. Cellular uptake of long-chain fatty acids: role of membrane-associated fatty-acid-binding: transport proteins // Cell. Mol. Life Sci. 2000.Vol.57, №10.P.1360–1372.

18. Dutta-Roy A.K. Fatty acid transport and metabolism in the fetoplacental unit and the role of fatty acid-binding proteins // J. Nutr. Biochem. 1997. Vol.8, №10. P.548–557.

19. Dutta-Roy A.K. Transport mechanisms for long-chain polyunsaturated fatty acids in the human placenta // Am. J. Clin. Nutr. 2000. Vol.71, №1 (Suppl.). P.315–322.

20. Transport of long chain polyunsaturated fatty acids across the human placenta: role of fatty acid-binding proteins / A.K.Dutta-Roy [et al.] // In: Y.S.Huang, D.Mills (eds.). g-Linolenic acid: metabolism and its role in nutrition and medicine. New York: AOCS Press, 1996. P.42–53.

21. Translocation of long chain fatty acids across the plasma membrane – lipid rafts and fatty acid transport proteins / R.Ehehalt [et al.]// Mol.Cell.Biochem. 2006. Vol.284, №1-2. P.135–140.

22. Insulin and fatty acids regulate the expression of the fat droplet-associated protein adipophilin in primary human trophoblasts/ U.Elchalal [et al.] // Am. J. Obstet. Gynecol. 2005. Vol.193, №5. P.1716–1723.

23. Gimeno R.E. Fatty acid transport proteins // Curr. Opin. Lipidol. 2007. Vol.18, №3. P.271–276.

24. Haggarty P. Effect of placental function on fatty acid requirements during pregnancy // Eur. J. Clin. Nutr. 2004. Vol.58, №12. P.1559–1570.

25. Effect of maternal polyunsaturated fatty acid concentration on transport by the human placenta / P.Haggarty [et al.] // Biol. Neonate. 1999. Vol.75, №6. P.350–359.

26. Long-chain polyunsaturated fatty acid transport across the perfused human placenta / P.Haggarty [et al.] // Placenta. 1997. Vol.18, №8. P.635–642.

27. Harizi H., Gualde N. The impact of eicosanoids on the crosstalk between innate and adaptive immunity: the key roles of dendritic cells // Tissue Antigens. 2005. Vol.65, №6. P.507–514.

28. Haunerland N.H., Spener F. Fatty acid-binding proteins – insights from genetic manipulations // Prog. Lipid Res. 2004. Vol.43, №4. P.328–349.

29. Herrera E. Implications of dietary fatty acids during pregnancy on placental, fetal and postnatal development: a review // Placenta. 2002. Vol.23, Suppl.A. P. S9–S19.

30. Fatty acid composition of umbilical arteries and veins: possible implication for the fetal EFA-status / G.Hornstra [et al.] // Lipids. 1989. Vol.24, №6. P.511–517.

31. Hui T.Y., Bernlohr D.A. Fatty acid transporters in animal cells // Front. Biosci. 1997. Vol.15, №2. P.222–231.

32. Ibrahimi A., Abumrad N.A. Role of CD36 in membrane transport of long-chain fatty acids // Curr. Opin. Clin. Nutr. Metab. Care. 2002. Vol.5, №2. P.139–145.

33. Innis S.M. Essential fatty-acids in growth and development // Prog. Lipid Res. 1991. Vol.30, №1. P.39–103.

34. Innis S.M. Essential fatty acid transfer and fetal development // Placenta. 2005. Vol.26, Suppl.A. P.70–75.

35. Kamp F., Hamilton J.A. How fatty acids of different chain length enter and leave cells by free diffusion // Prostaglandins Leukot. Essent. Fatty Acids. 2006. Vol.75, №3. P.149–159.

36. Kampf J.P., Cupp D., Kleinfeld A.M. Different mechanisms of free fatty acid flip-flop and dissociation revealed by temperature and molecular species dependence of transport across lipid vesicles // J. Biol. Chem. 2006. Vol.281, №30. P.21566–21574.

37. Eicosanoids in inflammation: biosynthesis, pharmacology, and therapeutic frontiers / S.P.Khanapure [et al.] // Curr. Top. Med. Chem. 2007. Vol.7, №3. P.311–340.

38. Klemens С.М., Salari K., Mozurkewich E. Assessing Omega-3 Fatty Acid Supplementation During Pregnancy and Lactation to Optimize Maternal Mental Health and Childhood Cognitive Development // Clin. Lipidology. 2012. Vol.7, №1. P.93–109.

39. Koletzko B., Larque E., Demmelmair H. Placental transfer of long-chain polyunsaturated fatty acids (LC-PUFA) // J. Perinat. Med. 2007. Vol.35, Suppl.1. P.5–11.

40. Kurzchalia T.V., Parton R.G. Membrane microdomains and caveolae // Curr. Opin. Cell Biol. 1999. Vol.11, №4. P.424–431.

41. Lager S. Cytokine and lipids in pregnancy – effects on developmental programming and placental nutrient transfer: Doctoral thesis. Gothenburg, Sweden, 2010. 68 p.

42. In vivo investigation of the placental transfer of (13)C-labeled fatty acids in humans / E.Larqué [et al.] // J. Lipid Res. 2003. Vol.44, №1. P.49–55.

43. Docosahexaenoic acid supply in pregnancy affects placental expression of fatty acid transport proteins / E.Larqué [et al.] // Am. J. Clin. Nutr. 2006. Vol.84, №4. P.853–861.

44. Leu B.H., Schmidt J.T. Arachidonic acid as a retrograde signal controlling growth and dynamics of retinotectal arbors // Dev. Neurobiol. 2008. Vol.68, Iss.1. P.18–30.

45. Placental triglyceride accumulation in maternal type 1 diabetes is associated with increased lipase gene expression / M.L.Lindegaard [et al.] // J. Lipid Res. 2006. Vol.47, №11. P.2581–2588.

46. Gestational and hormonal regulation of human placental lipoprotein lipase / A.L.Magnusson-Olsson [et al.] // J. Lipid Res. 2006. Vol.47, №11. P.2551–2561.

47. Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain / A.Mata de Urquiza [et al.] // Science. 2000. Vol.290, №5499. P.2140–2144.

48. Regulation of fatty acid transport protein and fatty acid translocase mRNA levels by endotoxin and cytokines / R.A.Memon [et al.] // Am. J. Physiol. 1998. Vol.274, №2(Pt.1). P.210–217.

49. Long-chain fatty acid uptake into adipocytes depends on lipid raft function / J.Pohl [et al.] // Biochemistry. 2004. Vol.43, №4. P.4179–4187.

50. FAT/CD36-mediated long-chain fatty acid uptake in adipocytes requires plasma membrane rafts / J.Pohl [et al.] // Mol. Biol. Cell. 2005. Vol.16, №1. P.24–31.

51. Rietveld A., Simons K. The differential miscibility of lipids as the basis for the formation of functional membrane rafts // Biochim. Biophys. Acta. 1998. Vol.1376, №3. P.467–479.

52. Peroxisome proliferator-activated receptor-gamma and retinoid X receptor signaling regulate fatty acid uptake by primary human placental trophoblasts / W.T.Schaiff [et al.] // J. Clin. Endocrinol. Metab. 2005. Vol.90, №7. P.4267–4275.

53. Schaffer J.E. Fatty acid transport: the roads taken // Am. J. Physiol. Endocrinol. Metab. 2002. Vol.282, №2. P.239–246.

54. Schaffer J.E., Lodish H.F. Expression cloning and characterization of a novel adipocyte long chain fatty acid transport protein // Cell. 1994. Vol.79, №3. P.427–436.

55. Fatty acid composition of serum lipids of mothers and their babies after normal and hypertensive pregnancies / Y.T.van der Schouw[et al.] // Prostaglandin Leukot. Essent. Fatty Acids. 1991. Vol.44, №4. P.247–252.

56. Human placenta metabolizes fatty acids: implications for fetal fatty acid oxidation disorders and maternal liver diseases / P.Shekhawat [et al.] // Am. J. Physiol. Endocrinol. Metab. 2003. Vol.284, №6. P.1098–1105.

57. Simons K., Ehehalt R. Cholesterol, lipid rafts, and disease // J. Clin. Invest. 2002. Vol.110, №5. P.597–603.

58. Smathers R.L., Petersen D.R. The human fatty acid-binding protein family: evolutionary divergences and functions // Hum. Genomics. 2011. Vol.5, №3. P.170–191.

59. Sprecher H. The roles of anabolic and catabolic reactions in the synthesis and recycling of polyunsaturated fatty acids // Prostaglandins Leukot. Essent. Fatty Acids. 2002. Vol.67, №2-3. P.79–83.

60. A new concept of cellular uptake and intracellular trafficking of long-chain fatty acids / W.Stremmel [et al.] // Lipids. 2001. Vol.36, №9. P.981–989.

61. Isolation and partial characterization of a fatty acid binding protein in rat liver plasma membranes / W.Stremmel [et al.] // Proc. Natl. Acad. Sci. USA. 1985. Vol.82, №1. P.4–8.

62. Thomas C.R., Lowy C. The interrelationships between circulating maternal esterified and non-esterified fatty acids in pregnant guinea pigs and their relative contributions to the fetal circulation // J. Dev. Physiol. 1987. Vol.9, №3. P.203–214.

63. Long-chain polyunsaturated fatty acid transport across human placental choriocarcinoma (BeWo) cells / К.A.Tobin [et al.] // Placenta. 2009. Vol.30, №1. P.41–47.

64. Trigatti B.L., Anderson R.G., Gerber G.E. Identification of caveolin-1 as a fatty acid binding protein // Biochem. Biophys. Res. Commun. 1999. Vol.255, №1. P.34–39.

65. Further characterization of a novel triacylglycerol hydrolase activity (pH 6.0 optimum) from microvillous membranes from human term placenta / I.J.Waterman [et al.] // Placenta. 2000. Vol.21, №8. P.813–823.

66. Endocytosis of oxidized low density lipoprotein through scavenger receptor CD36 utilizes a lipid raft pathway that does not require caveolin-1 / Y.Zeng [et al.] // J. Biol. Chem. 2003. Vol. 278, №46. P.45931–45936.


Рецензия

Для цитирования:


Довжикова И.В., Луценко М.Т. ТРАНСПОРТ ЖИРНЫХ КИСЛОТ ЧЕРЕЗ МЕМБРАНУ (ОБЗОР ЛИТЕРАТУРЫ). Бюллетень физиологии и патологии дыхания. 2013;(50):130-138.

For citation:


Dovzhikova I.V., Lutsenko M.T. MEMBRANE FATTY ACIDS TRANSPORT (REVIEW). Bulletin Physiology and Pathology of Respiration. 2013;(50):130-138. (In Russ.)

Просмотров: 179


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1998-5029 (Print)