Mechanical stress as a factor of airway remodeling in chronic respiratory diseases with bronchial obstruction syndrome (review)
https://doi.org/10.36604/1998-5029-2020-75-104-114
Abstract
This review summarizes and analyzes the results of modern experimental studies indicating the involvement of mechanical stress as an independent key factor in the formation of airway remodeling in patients with chronic obstructive lung diseases, in particular asthma and chronic obstructive pulmonary disease (COPD). The mechanisms modulating the structural changes of the respiratory tract are described at the level of the respiratory epithelium, fibroblasts, and smooth muscle cells. Attention is paid to possible molecular mechanisms mediating the effect of mechanical stress on the respiratory tract under conditions of increased bronchial resistance. Possible participation of transient receptor potential (TRP) channels with mechanoreceptor properties in the process of remodeling is reviewed. These channels are widely expressed in the respiratory tract and can affect the formation of structural changes in the bronchial wall in asthma and COPD under the influence of mechanical forces leading to tissue deformation. To date, there are no effective pharmacotherapy agents that may prevent airway remodeling in patients with asthma and COPD, what makes the study of the role of the mechanoreceptors in this pathological process extremely relevant.
Keywords
About the Authors
E. Yu. Afanas’evaRussian Federation
Evgeniya Yu. Afanas’eva - MD, Junior Staff Scientist, Laboratory of Functional Research of Respiratory System.
22 Kalinina Str., Blagoveshchensk, 675000
D. E. Naumov
Russian Federation
Denis E. Naumov, MD, PhD (Med.), Head of Laboratory of Molecular and Translational Research.
22 Kalinina Str., Blagoveshchensk, 675000
References
1. Carr T.F., Bleecker E. Asthma heterogeneity and severity. World Allergy Organ. J. 2016; 9(1):41. doi: 10.1186/s40413-016-0131-2
2. Rehman A., Amin F., Sadeeqa S. Prevalence of asthma and its management: A review. J. Pak. Med. Assoc. 2018; 68(12):1823-1827.
3. Adeloye D., Chua S., Lee C., Basquill C., Papana A., Theodoratou E., Nair H., Gasevic D., Sridhar D., Campbell H., Chan K.Y., Sheikh A., Rudan I. Global and regional estimates of COPD prevalence: Systematic review and meta-analysis. J. Glob. Health. 2015; 5(2):020415. doi: 10.7189/jogh.05-020415
4. Papi A., Brightling C., Pedersen S.E., Reddel H.K. Asthma. Lancet. 2018; 391:783-800. doi: 10.1016/S0140-6736(17)33311-1
5. Russell R.J., Brightling C. Pathogenesis of asthma: implications for precision medicine. Clin. Sci. (Lond). 2017; 131(14):1723-1735. doi: 10.1042/CS20160253
6. Fehrenbach H., Wagner C., Wegmann M. Airway remodeling in asthma: what really matters. Cell Tissue Res. 2017; 367(3):551-569. doi: 10.1007/s00441-016-2566-8
7. Boulet L.P. Airway remodeling in asthma: update on mechanisms and therapeutic approaches. Curr Opin. Pulm. Med. 2018; 24(1):56-62. doi: 10.1097/MCP.0000000000000441
8. Hartley R.A., Barker B.L., Newby C., Pakkal M., Baldi S., Kajekar R., Kay R., Laurencin M., Marshall R., Sousa A.R., Parmar H., Siddiqui S., Gupta S., Brightling C.E. Relationship between lung function and quantitative computed tomographic parameters of airway remodeling, air trapping, and emphysema in patients with asthma and chronic obstructive pulmonary disease: A single-center study. J. Allergy Clin. Immunol. 2016; 137(5): 1413-1422. doi: 10.1016/j.jaci.2016.02.001
9. Jones R.L., Noble P.B., Elliot J.G., James A.L. Airway remodelling in COPD: It's not asthma! Respirology 2016; 21(8):1347-1356. doi: 10.1111/resp.12841
10. O'Halloran K.D. Blood flow to limb muscles during submaximal dynamic exercise with resistive breathing: Use it or lose it? Exp. Physiol. 2019; 104(2):165-167. doi: 10.1113/EP087483
11. Tschumperlin D.J., Drazen J.M. Mechanical stimuli to airway remodeling. Am. J. Respir. Crit. Care Med. 2001; 164(S2):90-94. doi: 10.1164/ajrccm.164.supplement_2.2106060
12. Gosens R., Grainge C.. Bronchoconstriction and airway biology: potential impact and therapeutic opportunities. Chest. 2015; 147(3):798-803. doi: 10.1378/chest.14-1142
13. Santus P., Pecchiari M., Tursi F., Valenti V., Saad M., Radovanovic D. The Airways' Mechanical Stress in Lung Disease: Implications for COPD Pathophysiology and Treatment Evaluation. Can. Respir. J. 2019; 2019:1-8. doi: 10.1155/2019/3546056
14. Toumpanakis D., Noussia O., Sigala I., Litsiou E., Loverdos K., Zacharatos P, Karavana V, Michailidou T., Magkou C. , Zhou Z., Theocharis S., Vassilakopoulos T. Inspiratory resistive breathing induces MMP-9 and MMP-12 expression in the lung. Am. J. Physiol. Lung Cell. Mol. Physiol. 2015; 308(7):683-692. doi: 10.1152/ajplung.00133.2014
15. Vassilakopoulos T., Toumpanakis D. Can resistive breathing injure the lung? Implications for COPD exacerbations. Int. J. Chron. Obstruct. Pulmon. Dis. 2016; 11:2377-2384. doi: 10.2147/COPD.S113877
16. Toumpanakis D., Kastis G.A., Zacharatos P, Sigala I., Michailidou T., Kouvela M., Glynos C., Divangahi M., Roussos C., Theocharis S.E., Vassilakopoulos T. Inspiratory resistive breathing induces acute lung injury. Am. J. Respir. Crit. Care Med. 2010; 182:1129-1136. doi: 10.1164/rccm.201001-01160C
17. Vassilakopoulos T., Divangahi M., Rallis G., Kishta O., Petrof B., Comtois A., Hussain S.N. Differential cytokine gene expression in the diaphragm in response to strenuous resistive breathing. Am. J. Respir. Crit. Care Med. 2004; 170:154-161. doi: 10.1164/rccm.200308-10710C
18. Grainge C.L., Lau L.C., Ward J.A., Dulay V., Lahiff G., Wilson S., Holgate S., Davies D.E., Howarth P.H. Effect of bronchoconstriction on airway remodeling in asthma. N. Engl. J. Med. 2011; 364(21):2006-2015. doi: 10.1056/NEJMoa1014350
19. Lan B., Mitchel J.A., O'Sullivan M.J., Park C.Y., Kim J.H., Cole W.C., Butler J.P., Park J.A. Airway epithelial compression promotes airway smooth muscle proliferation and contraction. Am. J. Physiol. Lung Cell. Mol. Physiol. 2018; 315(5):645-652. doi: 10.1152/ajplung.00261.2018
20. Yu Q., Li M. Effects of Mechanical Stretch on Expression of Airway Remodeling Associated Factors in Human Bronchial Epithelioid Cells. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2016; 33(5):923-930. doi: 10.13287/j.1001-9332.201805.005
21. Kilic O., Yoon A., Shah S.R., Yong H.M., Ruiz-Valls A., Chang H., Panettieri R.A.Jr., Liggett S.B., Quinones-Hi-nojosa A., An S.S., Levchenko A. A microphysiological model of the bronchial airways reveals the interplay of mechanical and biochemical signals in bronchospasm. Nat. Biomed. Eng. 2019; 7:532-544. doi: 10.1038/s41551-019-0366-7
22. Toumpanakis D., Vassilakopoulou V., Mizi E., Chatzianastasiou A., Loverdos K., Vraila I., Perlikos F., Tsoukalas D. , Giannakopoulou C.E., Sotiriou A., Dettoraki M., Karavana V, Vassilakopoulos T. p38 Inhibition Ameliorates Inspiratory Resistive Breathing-Induced Pulmonary Inflammation. Inflammation 2018; 41(5):1873-1887. doi: 10.1007/s10753-018-0831-6
23. Zuo L., Hallman A.H., Yousif M.K., Chien M.T. Oxidative stress, respiratory muscle dysfunction, and potential therapeutics in chronic obstructive pulmonary disease. Front Biol. (Beijing) 2012; 7:506-513. doi:10.1007/s11515-012-1251-x
24. Loverdos K., Toumpanakis D., Litsiou E., Karavana V., Glynos C., Magkou C., Theocharis S., Vassilakopoulos T. The differential effects of inspiratory, expiratory, and combined resistive breathing on healthy lung. Int. J. Chron. Obstruct. Pulmon. Dis. 2016; 11:1623-1638. doi: 10.2147/COPD.S106337
25. Grzela K., Litwiniuk M., Zagorska W., Grzela T. Airway Remodeling in Chronic Obstructive Pulmonary Disease and Asthma: the Role of Matrix Metalloproteinase-9. Arch. Immunol. Ther. Exp. (Warsz) 2016; 64(1):47-55. doi: 10.1007/s00005-015-0345-y
26. Liu X.J., Bao H.R., Zeng X.L., Wei J.M.. Effects of resveratrol and genistein on nuclear factor kB, tumor necrosis factor a and matrix metalloproteinase 9 in patients with chronic obstructive pulmonary disease. Mol. Med. Rep. 2016; 13(5):4266-4272. doi: 10.3892/mmr.2016.5057
27. Gorka K., Soja J., Jakiela B., Plutecka H., Gross-Sondej I., Cmiel A., Mikrut S., Loboda P., Andrychiewicz A., Jurek P, Sladek K. Relationship between the thickness of bronchial wall layers, emphysema score, and markers of remodeling in bronchoalveolar lavage fluid in patients with chronic obstructive pulmonary disease. Pol. Arch. Med. Wewn. 2016; 126(6):402-410. doi: 10.20452/pamw.3461
28. Kuwabara Y., Kobayashi T., D'Alessandro-Gabazza C.N., Toda M., Yasuma T., Nishihama K., Takeshita A., Fuji-moto H., Nagao M., Fujisawa T., Gabazza E.C. Role of Matrix Metalloproteinase-2 in Eosinophil-Mediated Airway Remodeling. Front. Immunol. 2018; 9:2163. doi: 10.3389/fimmu.2018.02163
29. Hogg J.C., Timens W. The pathology of chronic obstructive pulmonary disease. Annu. Rev. Pathol. 2009; 4:435459. doi: 10.1146/annurev.pathol.4.110807.092145
30. Barnes P.J., Burney P.G., Silverman E.K., Celli B.R., Vestbo J., Wedzicha J.A., Wouters E.F. Chronic obstructive pulmonary disease. Nat. Rev. Dis. Primers 2015; 1:15076. doi: 10.1038/nrdp.2015.76
31. Yu Q., Li M. Effects of transient receptor potential canonical 1 (TRPC1) on the mechanical stretch-induced expression of airway remodeling-associated factors in human bronchial epithelioid cells. J. Biomech. 2017; 51:89-96. doi: 10.1016/j.jbiomech.2016.12.002
32. Garrison S.R., Dietrich A., Stucky C.L. TRPC1 contributes to light-touch sensation and mechanical responses in low-threshold cutaneous sensory neurons. J. Neurophysiol. 2012; 107(3):913-922. doi: 10.1152/jn.00658.2011
33. Huang Y.W., Chang S.J., Ham H.I., Huang H.T., Lin H.H., Shen M.R., Tang M.J., Chiu W.T. Mechanosensitive store-operated calcium entry regulates the formation of cell polarity. J. Cell. Physiol. 2015; 230(9):2086-2097. doi: 10.1002/jcp.24936
34. Pu Q., Zhao Y., Sun Y., Huang T., Lin P., Zhou C., Qin S., Singh B.B., Wu M. TRPC1 intensifies house dust mite-induced airway remodeling by facilitating epithelial-to-mesenchymal transition and STAT3/NF-kB signaling. FASEB J. 2019; 33(1):1074-1085. doi: 10.1096/fj.201801085R
35. Shen B., Wong C.O., Lau O.C., Woo T., Bai S., Huang Y., Yao X. Plasma membrane mechanical stress activates TRPC5 channels. PLoS One 2015; 10(4):e0122227. doi: 10.1371/journal.pone.0122227
36. Welsh D.G., Morielli A.D., Nelson M.T., Brayden J.E. Transient receptor potential channels regulate myogenic tone of resistance arteries. Circ. Res. 2002; 90(3):248-250. doi: 10.1161/hh0302.105662
37. Xu B.M., Zhang J.H., Wang J.L., Xiao J.H. TRPC3 overexpression and intervention in airway smooth muscle of ovalbumin-induced hyperresponsiveness and remodeling. Cell. Biol. Int. 2018; 42(8):1021-1029. doi: 10.1002/cbin.10970
38. Meng Q., Fang P., Hu Z., Ling Y., Liu H. Mechanotransduction of trigeminal ganglion neurons innervating inner walls of rat anterior eye chambers. Am. J. Physiol. Cell Physiol. 2015; 309(1):1-10. doi: 10.1152/ajpcell.00028.2015
39. Alonso-Carbajo L., Alpizar Y.A., Startek J.B., Lopez-Lopez J.R., Perez-Garcia M.T., Talavera K. Activation of the cation channel TRPM3 in perivascular nerves induces vasodilation of resistance arteries. J. Mol. Cell. Cardiol. 2019; 129:219-230. doi: 10.1016/j.yjmcc.2019.03.003
40. Sexton J.E., Desmonds T., Quick K., Taylor R., Abramowitz J., Forge A., Kros C.J., Birnbaumer L., Wood J.N. The contribution of TRPC1, TRPC3, TRPC5 and TRPC6 to touch and hearing. Neurosci. Lett. 2016; 610:36-42. doi: 10.1016/j.neulet.2015.10.052
41. Son A.R., Yang Y.M., Hong J.H., Lee S.I., Shibukawa Y., Shin DM. Odontoblast TRP channels and thermo/me-chanical transmission. J. Dent. Res. 2009; 88(11):1014-1019. doi: 10.1177/0022034509343413
42. Earley S., Waldron B.J., Brayden J.E. Critical role for transient receptor potential channel TRPM4 in myogenic constriction of cerebral arteries. Circ. Res. 2004; 95(9):922-929.
43. Feng N.H., Lee H.H., Shiang J.C., Ma M.C. Transient receptor potential vanilloid type 1 channels act as mech-anoreceptors and cause substance P release and sensory activation in rat kidneys. Am. J. Physiol. Renal Physiol. 2008; 294(2):F316-325.
44. Mihara H., Suzuki N., Yamawaki H., Tominaga M., Sugiyama T. TRPV2 ion channels expressed in inhibitory motor neurons of gastric myenteric plexus contribute to gastric adaptive relaxation and gastric emptying in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2013; 304(3):G235-240. doi: 10.1152/ajpgi.00256.2012
45. Liedtke W., Tobin D.M., Bargmann C.I., Friedman J.M. Mammalian TRPV4 (VR-OAC) directs behavioral responses to osmotic and mechanical stimuli in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 2003; 100(Suppl.2):14531-14536.
46. Kwan K.Y., Allchorne A.J., Vollrath M.A., Christensen A.P., Zhang D.S., Woolf C.J., Corey D.P. TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 2006; 50(2):277-289.
47. Li N., He Y., Yang G., Yu Q., Li M. Role of TRPC1 channels in pressure-mediated activation of airway remodeling. Respir. Res. 2019; 20(1):91. doi: 10.1186/s12931-019-1050-x
48. Chen X.X., Zhang J.H., Pan B.H., Ren H.L., Feng X.L., Wang J.L., Xiao J.H. TRPC3-mediated Ca(2+) entry contributes to mouse airway smooth muscle cell proliferation induced by lipopolysaccharide. Cell. Calcium 2016; 60(4):273-281. doi: 10.1016/j.ceca.2016.06.005
49. Zhu Y., Gao M., Zhou T., Xie M., Mao A., Feng L., Yao X., Wong W.T., Ma X. The TRPC5 channel regulates angiogenesis and promotes recovery from ischemic injury in mice. J. Biol. Chem. 2019; 294(1):28-37. doi: 10.1074/jbc.RA118.005392
50. Lin B.L., Matera D., Doerner J.F., Zheng N., Del Camino D., Mishra S., Bian H., Zeveleva S., Zhen X., Blair N.T., Chong J.A., Hessler D.P., Bedja D., Zhu G., Muller G.K., Ranek M.J., Pantages L., McFarland M., Netherton M.R., Berry A., Wong D., Rast G., Qian H.S., Weldon S.M., Kuo J.J., Sauer A., Sarko C., Moran M.M., Kass D.A., Pullen S.S. In vivo selective inhibition of TRPC6 by antagonist BI 749327 ameliorates fibrosis and dysfunction in cardiac and renal disease. Proc. Natl. Acad. Sci. USA 2019; 116(20):10156-10161. doi: 10.1073/pnas.1815354116
51. Hong W., Peng G., Hao B., Liao B., Zhao Z., Zhou Y., Peng F., Ye X., Huang L., Zheng M., Pu J., Liang C., Yi E., Peng H., Li B., Ran P. Nicotine-Induced Airway Smooth Muscle Cell Proliferation Involves TRPC6-Dependent Calcium Influx Via a7 nAChR. Cell. Physiol. Biochem. 2017; 43(3):986-1002. doi: 10.1159/000481651
52. Choi J.Y., Lee H.Y., Hur J., Kim K.H., Kang J.Y., Rhee C.K., Lee S.Y. TRPV1 Blocking Alleviates Airway Inflammation and Remodeling in a Chronic Asthma Murine Model. Allergy Asthma Immunol. Res. 2018; 10(3):216-224. doi: 10.4168/aair.2018.10.3.216
53. Zhao L., Zhang X., Kuang H., Wu J., Guo Y., Ma L. Effect of TRPV1 channel on the proliferation and apoptosis in asthmatic rat airway smooth muscle cells. Exp. Lung Res. 2013; 39(7):283-294. doi: 10.3109/01902148.2013.813610
54. Ishii T., Uchida K., Hata S., Hatta M., Kita T., Miyake Y., Okamura K., Tamaoki S., Ishikawa H., Yamazaki J. TRPV2 channel inhibitors attenuate fibroblast differentiation and contraction mediated by keratinocyte-derived TGF-P1 in an in vitro wound healing model of rats. J. Dermatol. Sci. 2018; 90(3):332-342. doi: 10.1016/j.jdermsci.2018.03.003.
55. Zhan L., Li J. The role of TRPV4 in fibrosis. Gene 2018; 642:1-8. doi: 10.1016/j.gene.2017.10.067
56. Rahaman S.O., Grove L.M., Paruchuri S., Southern B.D., Abraham S., Niese K.A., Scheraga R.G., Ghosh S., Thodeti C.K., Zhang D.X., Moran M.M., Schilling W.P., Tschumperlin D.J., Olman M.A. TRPV4 mediates myofibroblast differentiation and pulmonary fibrosis in mice. J. Clin. Invest. 2014; 124(12):5225-5238. doi: 10.1172/JCI75331
57. Okada Y., Shirai K., Reinach P.S., Kitano-Izutani A., Miyajima M., Flanders K.C., Jester J.V., Tominaga M., Saika S. TRPA1 is required for TGF-P signaling and its loss blocks inflammatory fibrosis in mouse corneal stroma. Lab. Invest. 2014; 94(9):1030-1041. doi: 10.1038/labinvest.2014.85
Review
For citations:
Afanas’eva E.Yu., Naumov D.E. Mechanical stress as a factor of airway remodeling in chronic respiratory diseases with bronchial obstruction syndrome (review). Bulletin Physiology and Pathology of Respiration. 2020;(75):104-114. (In Russ.) https://doi.org/10.36604/1998-5029-2020-75-104-114