Роль экзосом в патогенезе легочных заболеваний (обзор литературы)
https://doi.org/10.36604/1998-5029-2020-76-107-117
- Р Р‡.МессенРТвЂВВВВВВВВжер
- РћРТвЂВВВВВВВВнокласснРСвЂВВВВВВВВРєРСвЂВВВВВВВВ
- LiveJournal
- Telegram
- ВКонтакте
- РЎРєРѕРїРСвЂВВВВВВВВровать ссылку
Полный текст:
Аннотация
В обзоре литературы представлены современные данные об экзосомах - микроскопических внеклеточных везикулах диаметром 30-180 нанометров, выделяемых в межклеточное пространство клетками органов дыхания. Клетки респираторной системы организма секретируют экзосомы в межклеточное пространство в нормальном состоянии, а также при развитии заболевания. Содержание экзосом зависит от типа клеток и включает в себя мРНК, микроРНК, ДНК и сигнальные белки. Некоторые экзосомальные белки, такие как CD63, CD81, CD9, CD24 и белок теплового шока (Hsp70) являются универсальными и они обычно используются в качестве экзосо-мальных маркеров. При заболевании органов дыхания, в частности, у больных хронической обструктивной болезнью легких, в экзосомах значительно повышен уровень IL-1P и микроРНК (miR-15b, miR-223, miR-1274a, miR-424, mir-210). Самая распространенная микроРНК, выделенная из ткани лёгких - miR-21, повышение экспрессии которой связано с проявлением симптоматики астмы, идиопатического легочного фиброза и рака легкого. Анализ экзосом позволяет различать легочную и внелегочную формы туберкулеза на основе экзосомальных маркеров, таких как MPT64. Циркулирующие экзосомы стабильны в биологических жидкостях, поэтому анализ экзосомальных микроРНК может характеризовать состояние респираторной системы человека. Данный обзор открывает возможность использовать новые диагностические и терапевтические мишени для различных заболеваний дыхательной системы.
Ключевые слова
Об авторах
С. С. ЦелуйкоРоссия
Сергей Семенович Целуйко – доктор медицинских наук, профессор, зав. кафедрой гистологии и биологии.
675000, Благовещенск, ул. Горького, 95
В. О. Деревянная
Россия
Валерия Олеговна Деревянная - студентка 4 курса лечебного факультета.
675000, Благовещенск, ул. Горького, 95
Список литературы
1. Bumey P., Jithoo A., Kato B. Chronic obstructive pulmonary disease mortality and prevalence: the associations with smoking and poverty a BOLD analysis // Thorax. 2014 .Vol.69, №5, P.465-473. https://doi.org/10.1136/thoraxjnI-2013-204460
2. Choi D.S., Kim D.K., Kim Y.K., Gho Y.S. Proteomics, transcriptomics, and lipidomics of exosomes and ectosomes // Proteomics. 2013. Vol.13, №10-11. P.1554-1571. https://doi.org/10.1002/pmic.201200329
3. McVey M.J., Spring C.M., Semple J.W., Maishan M., Kuebler W.M. Microparticles as biomarkers of lung disease: enumeration in biological fluids using lipid bilayer microspheres // Am. J. Physiol. Lung Cell. Mol. Physiol. 2016. Vol.310, №9. P.802-814. https://doi.org/m.1152/ajplung.00369.2015
4. Ryu A., Kim D.H, Kim E., Lee M.Y. The Potential Roles of Extracellular Vesicles in Cigarette Smoke-Associated Diseases // Oxid. Med. Cell. Longev. 2018. P.1-8. https://doi.org/10.1155/2018/4692081
5. Pant S., Hilton H., Burczynski M. E. The multifaceted exosome: Biogenesis, role in normal and aberrant cellular function, and frontiers for pharmacological and biomarker opportunities // Biochem. Pharmacol. 2012. Vol.83, №11. P.1484-1494. https://doi.org/10.1016/j.bcp.2011.12.037
6. Emerging Concepts of Tumor Exosome - Mediated Cell-Cell Communication / H.-G.Zhang, ed. // New York: Springer, 2013. https://doi.org/10.1007/978-1-4614-3697-3
7. Деревянная В.О., Целуйко С.С. Выделение и идентификация микровезикул и экзосом, выделенных из эмбриональных клеток крысы // Биологический журнал: эл. научный журнал. 2019. №3(3). https://doi.org/10.32743/2658-6460.2019.3.3.90
8. Ayers L., Kohler M., Harrison P., Sargent I., Dragovic R., Schaap M., Nieuwland R., Brooks S.A., Ferry B. Measurement of circulating cell derived microparticles by flow cytometry: sources of variability within the assay // Thromb. Res. 2011. Vol.127, №4. Р.370-377. https://doi.org/10.1016/j.thromres.2010.12.014
9. Cross L.J., Matthay M.A. Biomarkers in acute lung injury: insights into the pathogenesis of acute lung injury // Crit. Care Clin. 2011. Vol.27. P. 355-377. https://doi.org/10.1016/j.ccc.2010.12.005
10. Cheng L., Sharples R.A., Scicluna B.J., Hill A.F. Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood // J. Extracell. Vesicles. 2014. Vol.3. https://doi.org/10.3402/jev.v3.23743
11. Alipoor S., Mortaz E., Garssen J., Movassaghi M., Mirsaeidi M., Adcock I.M. Exosomes and Exosomal miRNA in Respiratory Diseases // Mediators Inflamm. 2016. Vol.2016. Article ID 5628404. https://doi.org/10.1155/2016/5628404
12. Silva J., Garda V., Zaballos A., Provencio M., Lomba^a L, Almonacid L., Garda J.M., Dommguez G., Pena C., Diaz R., Herrera M., Varela A., Bonilla F. Vesicle-related microRNAs in plasma of nonsmall cell lung cancer patients and correlation with survival // Eur. Respir. J. 2011. Vol.37, №3. Р.617-623. https://doi.org/10.1183/09031936.00029610
13. Fevrier B., Raposo G. Exosomes. Endosomal-derived vesicles shipping extracellular messages // Curr. Opin. Cell Biol. 2004. Vol.16, №4. P.415-421. https://doi.org/10.1016/j.ceb.2004.06.003
14. Гусаченко О. Н., Зенкова М. А., Власов В.В. Нуклеиновые кислоты экзосом: маркеры заболеваний и молекулы межклеточной коммуникации // Биохимия. 2013. Т.78, №1. С.5-13.
15. Tickner J.A, Urquhart A.J, Stephenson S.-A, Richard D.J, O’Byrne K.J. Functions and therapeutic roles of exosomes in cancer // Front. Oncol. 2014. Vol.4. Р.127. https://doi.org/10.3389/fonc.2014.00127
16. Bhatnagar S., Schorey J.S. Exosomes released from infected macrophages contain Mycobacterium avium glyco-peptidolipids and are proinflammatory // J. Biol. Chem. 2007. Vol.282, №35. Р.25779-25789. https://doi.org/10.1074/jbc.M702277200
17. Anand P.K., Anand E., Bleck C.K.E., Anes E., Griffiths G. Exosomal hsp70 induces a pro-inflammatory response to foreign particles including mycobacteria // PLoS One. 2010. Vol.5, №4. e10136. https://doi.org/10.1371/journal.pone.0010136
18. Moon H.G., Zheng Y, An C.H., Kim Y.K., Jin Y. CCN1 secretion induced by cigarette smoking extracts augments IL-8 release from bronchial epithelial cells // PLoS One. 2013. Vol.8, №7. e68199. https://doi.org/10.1371/journal.pone.0068199
19. Barnes P. J., Shapiro S.D., Pauwels R.A. Chronic obstructive pulmonary disease: molecular and cellular mechanisms // Eur. Respir. J. 2003. Vol.22, №4. Р.672-688. https://doi.org/10.1183/09031936.03.00040703
20. Takahashi T., Kubo H. The role of microparticles in chronic obstructive pulmonary disease // Int. J. Chron. Obstruct. Pulmon. Dis. 2014. Vol.9. Р.303-314. https://doi.org/10.2147/COPD.S38931
21. Beatriz S.P., Acquierb M.F., Joveb O.L., Giugnob E., Paceb S., Livellaraa B., Legala S., Oyhamburua J., Saeza M.S. Alpha-1 Antitrypsin Deficiency in COPD Patients: A Cross-Sectional Study // Arch. Bronconeumol. 2015. Vol.51, №11. Р 539-543. https://doi.org/m.m16/j.arbr.2015.09.013
22. Lockett A., Brown M.B, Santos-Falcon N., Rush N., Oueini H., Oberle A., Bolanis E., Fragoso M., Petrusca D., Serban K., Schweitzer K., Presson R., Campos M., Petrache I. Active trafficking of alpha 1 antitrypsin across the lung endothelium // PLoS One. 2014. Vol.9, №4. e93979. https://doi.org/10.1371/journal.pone.0093979
23. Sohal S.S., Walters E.H. Role of epithelial mesenchymal transition (EMT) in chronic obstructive pulmonary disease (COPD) // Respir. Res. 2013. Vol.14, article 120. https://doi.org/10.1186/1465-9921-14-120
24. Barnes P.J., Adcock I.M. Chronic obstructive pulmonary disease and lung cancer: a lethal association // Am. J. Respir. Crit. Care Med. 2011. Vol.184, №8. Р.866-867. https://doi.org/10.1164/rccm.201108-1436ED
25. Chung K.F., Adcock I.M. Multifaceted mechanisms in COPD: inflammation, immunity, and tissue repair and destruction // Eur. Respir. J. 2008. Vol.31, №6. Р. 1334-1356. https://doi.org/10.1183/09031936.00018908
26. Moon H.G. Kim S.H., Gao J., Quan T., Qin Z., Osorio J.C., Rosas I.O., Wu M., Tesfaigzi Y., Jin Y CCN1 secretion and cleavage regulate the lung epithelial cell functions after cigarette smoke // Am. J. Physiol. Lung Cell. Mol. Physiol. 2014. Vol.307, №4. Р.326-337. https://doi.org/10.1152/ajplung.00102.2014
27. Leu S.J., Sung J., Chen M., Chen C., Cheng J., Wang T., Wang J. The matricellular protein CCN1 suppresses lung cancer cell growth by inducing senescence via the p53/p21 pathway // J. Cell. Biochem. 2013. Vol.114, №9. Р.2082-2093. https://doi.org/10.1002/jcb.24557
28. Perbal B. CCN proteins: multifunctional signalling regulators // Lancet. 2004. Vol.363, №9402. Р.62-64. https://doi.org/10.1016/S0140-6736(03)15172-0
29. Fujita Y., Araya J., Ito S., Kobayashi K., Kosaka N., Yoshioka Y., Kadota T., Hara H., Kuwano K., Ochiya T. Suppression of autophagy by extracellular vesicles promotes myofibroblast differentiation in COPD pathogenesis // J. Extracell. Vesicles. 2015. Vol.4. Р.28388. https://doi.org/10.3402/jev.v4.28388
30. Osei E.T., Florez-Sampedro L., Timens W., Postma D.S., Heijink I.H. Unravelling the complexity of COPD by microRNAs: it's a small world after all // Eur. Respir. J. 2015. Vol.46, №3. Р.807-818. https://doi.org/10.1183/13993003.02139-2014
31. Fujita Y., Araya J., Ito S., Kobayashi K., Kosaka N., Yoshioka Y., Kadota T., Hara H., Kuwano K., Ochiya T. Suppression of autophagy by extracellular vesicles promotes myofibroblast differentiation in COPD pathogenesis // J. Extracell. Vesicles. 2015. Vol.4. Р.28388. https://doi.org/10.3402/jev.v4.28388
32. Shapiro S.D. Elastolytic metalloproteinases produced by human mononuclear phagocytes // Am. J. Respir. Crit. Care Med. 1994. Vol.150, №6 (Pt2). S160-164. https://doi.org/10.1164/ajrccm/150.6_Pt_2.S160
33. Takamizawa J., Konishi H., Yanagisawa K., Tomida S., Osada H., Endoh H., Harano T., Yatabe Y., Nagino M., Ni-mura Y., Mitsudomi T., Takahashi T. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival // Cancer Res. 2004. Vol.64, №11. Р. 3753-3756. https://doi.org/10.1158/0008-5472.CAN-04-0637
34. Salimian J., Mirzaei H., Moridikia A., Harchegani A.B., Sahebkar A., Salehi H. Chronic obstructive pulmonary disease: MicroRNAs and exosomes as new diagnostic and therapeutic biomarkers // J. Res. Med. Sci. 2018. Vol.23. Р.27. https://doi.org/10.4103/jrms.JRMS_1054_17
35. Rescusa P., Taverna S., Pucci M., Durendez E., Calabuig S., Manca P., Serrano M.J., Sober L., Pauwels P., Russo A., Rolfo C. Exosomes as diagnostic and predictive biomarkers in lung cancer // J. Thorac. Dis. 2017. Vol.9(Suppl.13):S1373-S1382. https://doi.org/10.21037/jtd.2017.10.67
36. Rabinowits G., Gergel-Taylor C., Day J.M., Taylor D.D., Kloecker G. H. Exosomal microRNA: a diagnostic marker for lung cancer // Clin. Lung Cancer. 2009. Vol.10, №1. Р.42-46. https://doi.org/10.3816/CLC.2009.n.006
37. Seike M., Goto A., Okano T., Bowman E., Schetter A., Horikawa I., Mathe E., Jen J., Yang P., Sugimura H., Gemma A., Kudoh S., Croce C., Harris C. MiR-21 is an EGFR-regulated anti-apoptotic factor in lung cancer in never-smokers // Proc. Natl. Acad. Sci. USA. 2009. Vol.106, №29. Р. 12085-12090. https://doi.org/10.1073/pnas.0905234106
38. Hatley M.E., Patrick D.M., Garcia M.R., Richardson J.A., Bassel-Duby R., Rooij E., Olson E.N. Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21 // Cancer Cell. 2010. Vol.18, №3. Р.282-293. https://doi.org/10.1016/j.ccr.2010.08.013
39. Chen R., Xu X, Qian Z., Zhang C., Niu Y., Wang Z., Sun J., Zhang X., Yu Y. The biological functions and clinical applications of exosomes in lung cancer // Cell. Mol. Life Sci. 2019. Vol.76. Р.4613-4633. https://doi.org/10.1007/s00018-019-03233-y
40. Asef A., Mortaz E., Jamaati H., Velayati A. Immunologic Role of Extracellular Vesicles and Exosomes in the Pathogenesis of Cystic Fibrosis // Tanaffos. 2018. Vol.17. №2. Р.66-72.
41. Velayati A.A., Abeel T., Shea T., Zhavnerko G.K., Birren B., Cassell G.H., Earl A.M., Hoffner S., Farnia P. Populations of latent Mycobacterium tuberculosis lack a cell wall: isolation, visualization, and whole-genome characterization // Int. J. Mycobacteriol. 2016. Vol.5, №1. Р.66-73. https://doi.org/10.1016/j.ijmyco.2015.12.001
42. Tufekci K.U., Oner M.G., Meuwissen R.L.J., Genc S. The role of microRNAs in human diseases // Methods Mol. Biol. 2014. Vol.1107. Р.33-50. https://doi.org/10.1007/978-1-62703-748-849
43. Kruh-Garcia N.A., Wolfe L.M., Dobos K.M. Deciphering the role of exosomes in tuberculosis // Tuberculosis. 2015. Vol.95, №1. Р.26-30. https://doi.org/m.m16/j.tube.2014.m.010
44. Kruh-Garcia N., Wolfe L., Chaisson L., Worodria W., Nahid P., Schorey J., Davis L., Dobos K. Detection of Mycobacterium tuberculosis peptides in the exosomes of patients with active and latent M. tuberculosis infection using MRM-MS // PLoS One. 2014. Vol.9, №7. e103811. https://doi.org/m.1371/joumal.pone.01038n
45. Beatty W.L., Rhoades E.R., Ullrich H.J., Chatterjee D., Heuser J.E., Russell D.G. Trafficking and release of mycobacterial lipids from infected macrophages // Traffic. 2000. Vol.1, №3. Р.235-247. https://doi.org/10.1034/j.1600-0854.2000.010306.x
46. Fortune S.M., Solache A., Jaeger A., Hill P. J., Belisle J.T., Bloom B.R., Rubin E.J., Ernst J.D. Mycobacterium tuberculosis inhibits macrophage responses to IFN-y through myeloid differentiation factor 88-dependent and -independent mechanisms // J. Immunol. 2004. Vol.172, №10. Р.6272-6280. https://doi.org/10.4049/jimmunol.172.10.6272
47. Singh P.P., LeMaire C., Tan J.C., Zeng E., Schorey J.S. Exosomes Released from M. tuberculosis Infected Cells Can Suppress IFN-y Mediated Activation of Naive Macrophages // PLoS One. 2011. Vol.6, №4. e18564. https://doi.org/10.1371/journal.pone.0018564
48. Qazi K.R., Paredes P.T., Dahlberg B., Grunewald J., Eklund A., Gabrielsson S. Proinflammatory exosomes in bron-choalveolar lavage fluid of patients with sarcoidosis // Thorax. 2010. Vol.65, №11. Р.1016-1024. https://doi.org/10.1136/thx.2009.132027
49. Admyre C., Bohle B., Johansson S.M., Focke-Tejkl M., Valenta R., Scheynius A., Gabrielsson S. B cell-derived exosomes can present allergen peptides and activate allergen-specific T cells to proliferate and produce TH2-like cytokines // J. Allergy Clin. Immunol. 2007. Vol.120, №6. Р.1418-1424. https://doi.org/10.1016/j.jaci.2007.06.040
50. Huang W., Febbraio M., Silverstein R.L. CD9 tetraspanin interacts with CD36 on the surface of macrophages: a possible regulatory influence on uptake of oxidized low density lipoprotein // PLoS One. 2011. Vol.6, №12. e29092. https://doi.org/10.1371/journal.pone.0029092
51. Ley B., Collard H.R., King T.E.Jr. Clinical course and prediction of survival in idiopathic pulmonary fibrosis // Am. J. Respir. Crit. Care Med. 2011. Vol.183, №4. Р431-440. https://doi.org/10.1164/rccm.201006-0894CI
52. Minnis P., Kane R., Anglin R, Walsh S., Worrel J., Khan F., Lumsden R., Whitty S., Keane M. Serum exosomes from IPF patients display a fibrotic miRNA profile that correlates to clinical measures of disease severity // Eur. Respir. J. 2015. Vol.46, Suppl.59. Article ID PA3845. https://doi.org/10.1183/13993003.congress-2015.PA3845
53. Johnson S., Grosshans H., Shingara J., Byrom M., Jarvis R., Cheng A., Labourier E., Reinert K., Brown D., Slack F. RAS is regulated by the let-7 microRNA family // Cell. 2005. Vol.120, №5. Р.635-647. https://doi.org/10.1016/j.cell.2005.01.014
54. Szul T., Bratcher P., Fraser K., Kong M., Tirouvanziam R., Ingersoll S., Sztul E., Rangarajan S., Blalock E., Xin Xu. Toll-like receptor 4 engagement mediates prolyl endopeptidase release from airway epithelia via exosomes // Am. J. Respir. Cell Mol. Biol. 2016. Vol.54, №3. Р.359-369. https://doi.org/10.1165/rcmb.2015-0108OC
Рецензия
Для цитирования:
Целуйко С.С., Деревянная В.О. Роль экзосом в патогенезе легочных заболеваний (обзор литературы). Бюллетень физиологии и патологии дыхания. 2020;(76):107-117. https://doi.org/10.36604/1998-5029-2020-76-107-117
For citation:
Tseluyko S.S., Derevyannaya V.O. Role of exosomes in pathogenesis of pulmonary diseases (review). Bulletin Physiology and Pathology of Respiration. 2020;(76):107-117. (In Russ.) https://doi.org/10.36604/1998-5029-2020-76-107-117