Analysis of TRPV gene expression in the respiratory epithelium of asthma patients with osmotic airway hyperresponsiveness
https://doi.org/10.36604/1998-5029-2020-78-40-46
Abstract
Aim. The aim of the study was to evaluate the expression TRPV1, TRPV2 and TRPV4 genes at mRNA level in the epithelium of the upper and lower respiratory tract in asthma patients with osmotic airway hyperresponsiveness.
Materials and methods. We examined 35 patients with mild and moderate asthma. All patients underwent bronchoprovocation tests with hypo- and hyperosmotic solutions. Expression of TRPV receptors was studied in brush biopsies of the nasal and bronchial epithelium by quantitative PCR with reverse transcription.
Results. Airway hyperrresponsiveness to hypoosmotic and hyperosmotic stimuli was observed in 25% and 50% of cases, respectively. It was found that patients with lower baseline FEV1 had overexpression of TRPV1 (3.2 times, p=0.05) and TRPV2 (6.2 times, p=0.013) in the bronchial epithelium. Hypoosmotic airway hyperresponsiveness was associated with increased expression of the TRPV1 (7.4 times, p=0.004) and TRPV2 (18.5 times, p=0.014) genes in the bronchial epithelium. Airway hyperresponsiveness to hypertonic stimulus was also characterized by higher expression of TRPV1 (4.7 times, p=0.013) and TRPV2 (7.6 times, p=0.024). No difference in TRPV4 expression levels was found.
Conclusion. The obtained data indicate the up-regulation of TRPV1 and TRPV2 in the bronchial epithelium of asthma patients with osmotic airway hyperresponsiveness, what, in turn, may indicate the role of these receptors in the development of airway osmotic-induced responses and in the pathogenesis of asthma.
Keywords
About the Authors
O. O. KotovaRussian Federation
Olesya O. Kotova, MD, Junior Staff Scientist, Laboratory of Molecular and Translational Research
22 Kalinina Str., Blagoveshchensk, 675000
D. E. Naumov
Russian Federation
Denis E. Naumov, MD, PhD (Med.), Head of Laboratory of Molecular and Translational Research
22 Kalinina Str., Blagoveshchensk, 675000
E. Yu. Afanas’eva
Russian Federation
Evgeniya Yu. Afanas’eva, MD, Junior Staff Scientist, Laboratory of Molecular and Translational Research
22 Kalinina Str., Blagoveshchensk, 675000
A. N. Odireev
Russian Federation
Andrey N. Odireev, MD, PhD, D.Sc. (Med.), Head of Laboratory of Prophylaxis of Non-Specific Lung Diseases
22 Kalinina Str., Blagoveshchensk, 675000
J. M. Perelman
Russian Federation
Juliy M. Perelman, MD, PhD, D.Sc. (Med.), Corresponding member of RAS, Рrofessor, Deputy Director on Scientific Work, Head of Laboratory of Functional Research of Respiratory System
22 Kalinina Str., Blagoveshchensk, 675000
References
1. Global Initiative for Asthma (GINA). Global Strategy for Asthma Management and Prevention (Update 2020). Available at: www.ginasthma.org.
2. Khizhniak J., Perelman J., Kolosov V. The seasonal dynamics of airway patency and reactivity in patients with bronchial asthma under monsoon climate conditions. Pacific Medical Journal 2009; (1):82–84 (in Russian).
3. Lam H.C., Li A.M., Chan E.Y., Goggins W.B. 3rd. The short-term association between asthma hospitalisations, ambient temperature, other meteorological factors and air pollutants in Hong Kong: a time-series study. Thorax 2016; 71(12):1097–1109. doi:10.1136/thoraxjnl-2015-208054
4. Bodaghkhani E., Mahdavian M., MacLellan C., Farell A., Asghari S. Effects of Meteorological Factors on Hospitalizations in Adult Patients with Asthma: A Systematic Review. Can. Respir. J. 2019; 2019:3435103. doi:10.1155/2019/3435103
5. Zhang Y., Peng L., Kan H., Xu J., Chen R., Liu Y., Wang W. Effects of meteorological factors on daily hospital admissions for asthma in adults: a time-series analysis. PLoS One 2014; 9(7):e102475. doi:10.1371/journal.pone.0102475
6. Brannan J.D., Lougheed M.D. Airway hyperresponsiveness in asthma: mechanisms, clinical significance, and treatment. Front. Physiol. 2012; 3:460. doi:10.3389/fphys.2012.00460
7. Anderson S.D. Indirect challenge tests: Airway hyperresponsiveness in asthma: its measurement and clinical significance. Chest 2010; 138(2 Suppl):25S–30S. doi:10.1378/chest.10-0116
8. Liedtke W., Choe Y., Martí-Renom M.A., Bell A.M., Denis C.S., Sali A., Hudspeth A.J., Friedman J.M., Heller S. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 2000; 103(3):525–535. doi:10.1016/s0092-8674(00)00143-4
9. Muraki K., Iwata Y., Katanosaka Y., Ito T., Ohya S., Shigekawa M., Imaizumi Y. TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes. Circ. Res. 2003; 93(9):829–838. doi:10.1161/01.RES.0000097263.10220.0C
10. Nishihara E., Hiyama T.Y., Noda M. Osmosensitivity of transient receptor potential vanilloid 1 is synergistically enhanced by distinct activating stimuli such as temperature and protons. PLoS One 2011; 6(7):e22246. doi:10.1371/journal.pone.0022246
11. McGarvey L.P., Butler C.A., Stokesberry S., Polley L., McQuaid S., Abdullah H., Ashraf S., McGahon M.K., Curtis T.M., Arron J., Choy D., Warke T.J., Bradding P., Ennis M., Zholos A., Costello R.W., Heaney L.G. Increased expression of bronchial epithelial transient receptor potential vanilloid 1 channels in patients with severe asthma. J. Allergy Clin. Immunol. 2014; 133(3):704–712.e4. doi:10.1016/j.jaci.2013.09.016.
12. Alenmyr L., Uller L., Greiff L., Högestätt E.D., Zygmunt P.M. TRPV4-mediated calcium influx and ciliary activity in human native airway epithelial cells. Basic Clin. Pharmacol. Toxicol. 2014; 114(2):210–216. doi:10.1111/bcpt.12135
13. Groneberg D.A., Niimi A., Dinh Q.T., Cosio B., Hew M., Fischer A., Chung K.F. Increased expression of transient receptor potential vanilloid-1 in airway nerves of chronic cough. Am. J. Respir. Crit. Care Med. 2004; 170(12):1276–1280. doi:10.1164/rccm.200402-174OC
14. Jia Y., Wang X., Varty L., Rizzo C.A., Yang R., Correll C.C., Phelps P.T., Egan R.W., Hey J.A. Functional TRPV4 channels are expressed in human airway smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2004; 287(2):L272–L278. doi:10.1152/ajplung.00393.2003
15. Cai X., Yang Y.C., Wang J.F., Wang Q., Gao J., Fu W.L., Zhu Z.Y., Wang Y.Y., Zou M.J., Wang J.X., Xu D.Q., Xu D.G. Transient receptor potential vanilloid 2 (TRPV2), a potential novel biomarker in childhood asthma. J. Asthma 2013; 50(2):209–214. doi:10.3109/02770903.2012.753454
16. Link T.M., Park U., Vonakis B.M., Raben D.M., Soloski M.J., Caterina M.J. TRPV2 has a pivotal role in macrophage particle binding and phagocytosis. Nat. Immunol. 2010; 11(3):232–239. doi:10.1038/ni.1842
17. Xie F., Xiao P., Chen D., Xu L., Zhang B. miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol. Biol. 2012; 80:75–84. doi:10.1007/s11103-012-9885-2
18. Belvisi M.G., Birrell M.A., Wortley M.A., Maher S.A., Satia I., Badri H., Holt K., Round P., McGarvey L., Ford J., Smith J.A. XEN-D0501, a Novel Transient Receptor Potential Vanilloid 1 Antagonist, Does Not Reduce Cough in Patients with Refractory Cough. Am. J. Respir. Crit. Care Med. 2017; 196(10):1255–1263. doi:10.1164/rccm.201704-0769OC
19. Zhang L., Sun T., Liu L., Wang L. The research of the possible mechanism and the treatment for capsaicin-induced cough. Pulm. Pharmacol. Ther. 2018; 49:1–9. doi:10.1016/j.pupt.2017.12.008
Review
For citations:
Kotova O.O., Naumov D.E., Afanas’eva E.Yu., Odireev A.N., Perelman J.M. Analysis of TRPV gene expression in the respiratory epithelium of asthma patients with osmotic airway hyperresponsiveness. Bulletin Physiology and Pathology of Respiration. 2020;(78):40-46. (In Russ.) https://doi.org/10.36604/1998-5029-2020-78-40-46