Modern concepts of the role of transient receptor potential channel vanilloid subfamily (TRPV) in development osmotic airway hyperresponsiveness in asthma patients (review)
https://doi.org/10.36604/1998-5029-2021-81-115-125
Abstract
Introduction. Airway hyperresponsiveness to osmotic stimuli is often found among patients with asthma. It is assumed that the transient receptor potential channels of vanilloid subfamily (TRPV) may play a key role in the onset of this phenomenon.
Aim. Review of modern world literature data on osmotic airway hyperresponsiveness and the role of TRPV channels in its development.
Materials and methods. This review summarizes the data from articles published over the past five years found in PubMed and Google Scholar. However, earlier publications were also included if necessary.
Results. The influence of natural osmotic triggers on the formation of bronchoconstriction in patients with asthma has been demonstrated. The effects that occur in the airways, depending on the functional state of TRPV1, TRPV2 and TRPV4 osmosensitive receptors are described, and the mechanisms that mediate the development of bronchial hyperresponsiveness with the participation of these channels are partially disclosed.
Conclusion. It is safe to assume that TRPV channels are directly or indirectly associated with airway hyperresponsiveness to osmotic stimuli. Signaling cascades triggered by TRPV activation largely explain the effects of osmotic influence on the airways and the occurrence of bronchoconstriction. It could be suggested that TRPV1 signaling mediates the development of bronchospasm to hyperosmolar stimuli, while TRPV2 and TRPV4 are most likely involved in hypoosmotic-induced bronchoconstriction. Further study of the role of TRPV1, TRPV2 and TRPV4 in osmotic airway hyperresponsiveness is relevant and promising in terms of pharmacological management of this condition.
About the Author
O. O. KotovaRussian Federation
Olesya O. Kotova - MD, Junior Staff Scientist, Laboratory of Molecular and Translational Research.
References
1. GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020; 396(10258):1204–1222. doi:10.1016/S0140-6736(20)30925-9
2. Schoettler N., Rodríguez E., Weidinger S., Ober C. Advances in asthma and allergic disease genetics: Is bigger always better? J. Allergy Clin. Immunol. 2019; 144(6):1495–1506. doi:10.1016/j.jaci.2019.10.023
3. Shah R., Newcomb D.C. Sex Bias in Asthma Prevalence and Pathogenesis. Front. Immunol. 2018; 9:2997. doi:10.3389/fimmu.2018.02997
4. Den Dekker H.T., Sonnenschein-van der Voort A.M.M., de Jongste J.C., Anessi-Maesano I., Arshad S.H., Barros H., Beardsmore C.S., Bisgaard H., Phar S.C., Craig L., Devereux G., van der Ent C.K., Esplugues A., Fantini M.P., Flexeder C., Frey U., Forastiere F., Gehring U., Gori D., van der Gugten A.C., Henderson A.J., Heude B., Ibarluzea J., Inskip H.M., Keil T., Kogevinas M., Kreiner-Møller E., Kuehni C.E., Lau S., Mélen E., Mommers M., Morales E., Penders J., Pike K.C., Porta D., Reiss I.K., Roberts G., Schmidt A., Schultz E.S., Schulz H., Sunyer J., Torrent M., Vassilaki M., Wijga A.H., Zabaleta C., Jaddoe V.W.V., Duijts L. Early growth characteristics and the risk of reduced lung function and asthma: A meta-analysis of 25,000 children. J. Allergy Clin. Immunol. 2016; 137(4):1026–1035. doi: 10.1016/j.jaci.2015.08.050
5. Peters U., Dixon A.E., Forno E. Obesity and asthma. J. Allergy Clin. Immunol. 2018; 141(4):1169–1179. doi: 10.1016/j.jaci.2018.02.004
6. Gautier C., Charpin D. Environmental triggers and avoidance in the management of asthma. J. Asthma Allergy 2017; 10:47–56. doi:10.2147/JAA.S121276
7. Murrison L.B., Brandt E.B., Myers J.B., Hershey G.K.K. Environmental exposures and mechanisms in allergy and asthma development. J. Clin. Investig. 2019; 129(4):1504–1515. doi:10.1172/JCI124612
8. Noval Rivas M., Crother T.R., Arditi M. The microbiome in asthma. Curr. Opin. Pediatr. 2016; 28(6):764–771. doi:10.1097/MOP.0000000000000419
9. Guilleminault L., Williams E.J., Scott H.A., Berthon B.S., Jensen M., Wood L.G. Diet and asthma: Is it time to adapt our message? Nutrients 2017; 9(11):1227. doi:10.3390/nu9111227
10. Global Initiative for Asthma (GINA). Global strategy for asthma management and prevention (Update 2020). Available at: ginasthma.org
11. Yang I.V., Lozupone C.A., Schwartz D.A. The environment, epigenome, and asthma. J. Allergy Clin. Immunol. 2017; 140(1):14–23. doi:10.1016/j.jaci.2017.05.011
12. Schoettler N., Strek M.E. Recent advances in severe asthma: from phenotypes to personalized medicine. Chest 2020; 157(3):516–528. doi: 10.1016/j.chest.2019.10.009
13. Jones T.L., Neville D.M., Chauhan A.J. Diagnosis and treatment of severe asthma: a phenotype-based approach. Clin. Med. (Lond.) 2018; 18(Suppl. 2):s36–s40. doi:10.7861/clinmedicine.18-2-s36
14. Moore W.C., Meyers D.A., Wenzel S.E., Teague W.G., Li H., Li X., D'Agostino R. Jr., Castro M., Curran-Everett D., Fitzpatrick A.M., Gaston B., Jarjour N.N., Sorkness R., Calhoun W.J., Chung K.F., Comhair S.A., Dweik R.A., Israel E., Peters S.P., Busse W.W., Erzurum S.C., Bleecker E.R. Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am. J. Respir. Crit. Care Med. 2010; 181(4):315–323. doi: 10.1164/rccm.200906-0896OC
15. Kaur R., Chupp G. Phenotypes and endotypes of adult asthma: Moving toward precision medicine. J. Allergy Clin. Immunol. 2019; 144(1):1–12. doi:10.1016/j.jaci.2019.05.031
16. Kuruvilla M.E., Lee F.E., Lee G.B. Understanding asthma phenotypes, endotypes, and mechanisms of disease. Clin. Rev. Allergy Immunol. 2019; 56(2):219–233. doi:10.1007/s12016-018-8712-1
17. Kume H., Hojo M., Hashimoto N. Eosinophil inflammation and hyperresponsiveness in the airways as phenotypes of COPD, and usefulness of inhaled glucocorticosteroids. Front. Pharmacol. 2019; 10:765. doi:10.3389/fphar.2019.00765
18. Lai K., Chen R., Peng W., Zhan W. Non-asthmatic eosinophilic bronchitis and its relationship with asthma. Pulm. Pharmacol. Ther. 2017; 47:66–71. doi:10.1016/j.pupt.2017.07.002
19. Kramer E.L., Madala S.K., Hudock K.M., Davidson C., Clancy J.P. Subacute TGFβ exposure drives airway hyperresponsiveness in cystic fibrosis mice through the PI3K pathway. Am. J. Respir. Cell Mol. Biol. 2020; 62(5):657–667. doi:10.1165/rcmb.2019-0158OC
20. Kadhim Yousif M., Al Muhyi A.A. Impact of weather conditions on childhood admission for wheezy chest and bronchial asthma. Med. J. Islam. Repub. Iran 2019; 33:89. doi:10.34171/mjiri.33.89
21. Pan R., Gao J., Wang X., Bai L., Wei Q., Yi W., Xu Z., Duan J., Cheng Q., Zhang Y., Su H. Impacts of exposure to humidex on the risk of childhood asthma hospitalizations in Hefei, China: Effect modification by gender and age. Sci. Total Environ. 2019; 691:296–305. doi:10.1016/j.scitotenv.2019.07.026
22. Hyrkäs-Palmu H., Ikäheimo T.M., Laatikainen T., Jousilahti P., Jaakkola M.S., Jaakkola J.J.K. Cold weather increases respiratory symptoms and functional disability especially among patients with asthma and allergic rhinitis. Sci. Rep. 2018; 8(1):10131. doi: 10.1038/s41598-018-28466-y
23. Afanaseva E.Yu., Prikhodko A.G., Perelman J.M. Influence of environmental humidity on clinical and functional features of the course of asthma. Bûlleten' fiziologii i patologii dyhaniâ = Bulletin Physiology and Pathology of Respiration 2020; (76):19–26 (in Russian). doi:10.36604/1998-5029-2020-76-19-26
24. Perelman J.M., Naumov D.E., Prikhodko A.G., Kolosov V.P. Mechanisms and manifestations of osmotic airway hyperresponsiveness. Vladivostok: Dalnauka; 2016 (in Russian). ISBN 978-5-8044-1627-1
25. Hallstrand T.S., Leuppi J.D., Joos G., Hall G.L., Carlsen K.H., Kaminsky D.A., Coates A.L., Cockcroft D.W., Culver B.H., Diamant Z., Gauvreau G.M., Horvath I., de Jongh F.H.C., Laube B.L., Sterk P.J., Wanger J. ERS technical standard on bronchial challenge testing: pathophysiology and methodology of indirect airway challenge testing. Eur. Respir. J. 2018; 52(5):1801033. doi: 10.1183/13993003.01033-2018
26. Zhou X., Naguro I., Ichijo H., Watanabe K. Mitogen-activated protein kinases as key players in osmotic stress signaling. Biochim. Biophys. Acta 2016; 1860(9):2037–2052. doi:10.1016/j.bbagen.2016.05.032
27. Kumar R., DuMond J.F., Khan S.H., Thompson E.B., He Y., Burg M.B., Ferraris J.D. NFAT5, which protects against hypertonicity, is activated by that stress via structuring of its intrinsically disordered domain. Proc. Natl Acad. Sci. USA 2020; 117(33):20292–20297. doi: 10.1073/pnas.1911680117
28. Finan J.D., Guilak F. The effects of osmotic stress on the structure and function of the cell nucleus. J. Cell. Biochem. 2010; 109(3):460–467. doi:10.1002/jcb.22437
29. Sharif-Naeini R., Ciura S., Zhang Z., Bourque C.W. Contribution of TRPV channels to osmosensory transduction, thirst, and vasopressin release. Kidney Int. 2008; 73(7):811–815. doi:10.1038/sj.ki.5002788
30. Murphy R.C., Lai Y., Nolin J.D., Aguillon Prada R.A., Chakrabarti A., Novotny M.V., Seeds M.C., Altemeier W.A., Gelb M.H., Hite R.D., Hallstrand T.S. Exercise-induced alterations in phospholipid hydrolysis, airway surfactant, and eicosanoids and their role in airway hyperresponsiveness in asthma. Am. J. Physiol. Lung Cell Mol. Physiol. 2021; 320(5):L705–L714. doi:10.1152/ajplung.00546.2020
31. Penn R.B. Mast cells in asthma: Here I am, stuck in the middle with you. Eur. Respir. J. 2020; 56(1):2001337. doi:10.1183/13993003.01337-2020
32. Page C., O'Shaughnessy B., Barnes P. Pathogenesis of COPD and Asthma. Handb. Exp. Pharmacol. 2017; 237:1–21. doi:10.1007/164_2016_61
33. Peng J.B., Suzuki Y., Gyimesi G., Hediger M.A. TRPV5 and TRPV6 Calcium-Selective Channels. In: Kozak J.A, Putney J.W.Jr., editors. Calcium entry channels in non-excitable cells. Boca Raton (FL): CRC Press/Taylor & Francis, 2018:241–274. doi:10.1201/9781315152592-13
34. Benítez-Angeles M., Morales-Lázaro S.L., Juárez-González E., Rosenbaum T. TRPV1: structure, endogenous agonists, and mechanisms. Int. J. Mol. Sci. 2020; 21(10):3421. doi:10.3390/ijms21103421
35. Moore C., Liedtke W.B. Osmomechanical-sensitive TRPV channels in mammals. In: Emir T.L.R., editor. Neurobiology of TRP Channels. Boca Raton (FL): CRC Press/Taylor & Francis, 2017:85–94. doi: 10.4324/9781315152837-5
36. Tominaga M. The Role of TRP channels in thermosensation. In: Liedtke W.B., Heller S., editors. TRP ion channel function in sensory transduction and cellular signaling cascades. Boca Raton (FL): CRC Press/Taylor & Francis; 2007. Chapter 20. Available at: www.ncbi.nlm.nih.gov/books/NBK5244/#
37. O'Neil R.G., Heller S. The mechanosensitive nature of TRPV channels. Pflugers Arch. 2005; 451(1):193–203. doi:10.1007/s00424-005-1424-4
38. Nishihara E., Hiyama T.Y., Noda M. Osmosensitivity of transient receptor potential vanilloid 1 is synergistically enhanced by distinct activating stimuli such as temperature and protons. PLoS One 2011; 6(7):e22246. doi:10.1371/journal.pone.0022246
39. Ciura S., Liedtke W., Bourque C.W. Hypertonicity sensing in organum vasculosum lamina terminalis neurons: a mechanical process involving TRPV1 but not TRPV4. J. Neurosci 2011; 31(41):14669–14676. doi:10.1523/JNEUROSCI.1420-11.2011
40. Lee LY, Gu Q. Role of TRPV1 in inflammation-induced airway hypersensitivity. Curr. Opin. Pharmacol. 2009; 9(3):243–249. doi:10.1016/j.coph.2009.02.002
41. Planells-Cases R., Garcìa-Sanz N., Morenilla-Palao C., Ferrer-Montiel A. Functional aspects and mechanisms of TRPV1 involvement in neurogenic inflammation that leads to thermal hyperalgesia. Pflugers Arch. 2005; 451(1):151–159. doi:10.1007/s00424-005-1423-5
42. Choi J.Y., Lee H.Y., Hur J., Kim K.H., Kang J.Y., Rhee C.K., Lee S.Y. TRPV1 blocking alleviates airway inflammation and remodeling in a chronic asthma murine model. Allergy Asthma Immunol. Res. 2018; 10(3):216–224. doi:10.4168/aair.2018.10.3.216
43. Samivel R., Kim D.W., Son H.R., Rhee Y.H., Kim E.H., Kim J.H., Bae J.S., Chung Y.J., Chung P.S., Raz E., Mo J.H. The role of TRPV1 in the CD4+ T cell-mediated inflammatory response of allergic rhinitis. Oncotarget 2016; 7(1):148–160. doi: 10.18632/oncotarget.6653
44. Xia Y., Xia L., Lou L., Jin R., Shen H., Li W. Transient receptor potential channels and chronic airway inflammatory diseases: a comprehensive review. Lung 2018; 196(5):505–516. doi:10.1007/s00408-018-0145-3
45. Grace M.S., Baxter M., Dubuis E., Birrell M.A., Belvisi M.G. Transient receptor potential (TRP) channels in the airway: role in airway disease. Br. J. Pharmacol. 2014; 171(10):2593–2607. doi:10.1111/bph.12538
46. Gouin O., L'Herondelle K., Lebonvallet N., Le Gall-Ianotto C., Sakka M, Buhé V., Plée-Gautier E., Carré J.L., Lefeuvre L., Misery L., Le Garrec R. TRPV1 and TRPA1 in cutaneous neurogenic and chronic inflammation: pro-inflammatory response induced by their activation and their sensitization. Protein Cell 2017; 8(9):644–661. doi:10.1007/s13238-017-0395-5
47. Bonvini S.J., Birrell M.A., Grace M.S., Maher S.A., Adcock J.J., Wortley M.A., Dubuis E., Ching Y.M., Ford A.P., Shala F., Miralpeix M., Tarrason G., Smith J.A., Belvisi M.G. Transient receptor potential cation channel, subfamily V, member 4 and airway sensory afferent activation: Role of adenosine triphosphate. J. Allergy Clin. Immunol. 2016; 138(1):249–261.e12. doi: 10.1016/j.jaci.2015.10.044
48. McGarvey L.P., Butler C.A., Stokesberry S., Polley L., McQuaid S., Abdullah H., Ashraf S., McGahon M.K., Curtis T.M., Arron J., Choy D., Warke T.J., Bradding P., Ennis M., Zholos A., Costello R.W., Heaney L.G. Increased expression of bronchial epithelial transient receptor potential vanilloid 1 channels in patients with severe asthma. J. Allergy Clin. Immunol. 2014; 133(3):704–712.e4. doi:10.1016/j.jaci.2013.09.016
49. Kotova O.O., Naumov D.E., Afanas’eva E.Yu., Odireev A.N., Perelman Yu.M. Analysis of TRPV gene expression in the respiratory epithelium of asthma patients with osmotic airway hyperresponsiveness. Bûlleten' fiziologii i patologii dyhaniâ = Bulletin Physiology and Pathology of Respiration 2020; (78):40–46 (in Russian). doi:10.36604/1998-5029-2020-78-40-46
50. Smit L. A., Kogevinas M., Antó J. M., Bouzigon E., González J. R., Le Moual N., Kromhout H., Carsin A. E., Pin I., Jarvis D., Vermeulen R., Janson C., Heinrich J., Gut I., Lathrop M., Valverde M. A., Demenais F., Kauffmann F. Transient receptor potential genes, smoking, occupational exposures and cough in adults. Respir. Res. 2012; 13(1):26. doi: 10.1186/1465-9921-13-26
51. Cantero-Recasens G., Gonzalez J. R., Fandos C., Duran-Tauleria E., Smit L. A., Kauffmann F., Antó J. M., Valverde M. A. Loss of function of transient receptor potential vanilloid 1 (TRPV1) genetic variant is associated with lower risk of active childhood asthma. J. Biol. Chem. 2010; 285(36):27532–27535. doi:10.1074/jbc.C110.159491
52. Zhang L., Sun T., Liu L., Wang L. The research of the possible mechanism and the treatment for capsaicin-induced cough. Pulm. Pharmacol. Ther. 2018; 49:1–9. doi:10.1016/j.pupt.2017.12.008
53. Belvisi M.G., Birrell M.A., Wortley M.A., Maher S.A., Satia I., Badri H., Holt K., Round P., McGarvey L., Ford J., Smith J.A. XEN-D0501, a Novel Transient Receptor Potential Vanilloid 1 Antagonist, Does Not Reduce Cough in Patients with Refractory Cough. Am. J. Respir. Crit. Care Med. 2017; 196(10):1255–1263. doi:10.1164/rccm.201704-0769OC
Review
For citations:
Kotova O.O. Modern concepts of the role of transient receptor potential channel vanilloid subfamily (TRPV) in development osmotic airway hyperresponsiveness in asthma patients (review). Bulletin Physiology and Pathology of Respiration. 2021;(81):115-125. (In Russ.) https://doi.org/10.36604/1998-5029-2021-81-115-125