Preview

Bulletin Physiology and Pathology of Respiration

Advanced search

Role of Toll-like receptors in COVID-19 pathogenesis

https://doi.org/10.36604/1998-5029-2021-82-107-115

Abstract

Introduction. This review summarizes the available information on the role of Toll-like receptors (TLRs) in the pathogenesis of the novel coronavirus infection COVID-19 induced by SARS-CoV-2. The exact pathogenesis of COVID-19 and the role of each component of innate and adaptive immunity are still unknown. 
Aim. Discussion of the possible role of TLRs in the immune response in COVID-19 infection. 
Results. Analysis of the literature in the PubMed database showed that the mechanism of penetration of SARS-CoV-2 and lysis of type II alveolocytes is the binding of the spike S-glycoprotein or capsid protein M of the virus to the receptor-binding domain of ACE2 on the surface of epithelial cells. Migration and infiltration of inflammatory cells leads to overactivation of TLR4 on the surface of alveolocytes and bronchial epithelium, shifting the process to MyD88-dependent acute inflammatory signaling and hypersecretion of proinflammatory cytokines that cause a “cytokine storm” and the development of severe complications of COVID-19 infection, in particular, acute respiratory infections, respiratory distress syndrome, pathology of internal organs, and, in some cases, the death of the patient. 
Conclusion. It is possible to suggest that TLRs have an impact on the immune response in COVID19 infection. Both antagonists and agonists of TLRs, depending on their type, can be examined to determine the therapeutic and negative effects of COVID-19 infection. Further research is needed to investigate TLRs and pathways for activating cytokine expression, as they indicate a direct relationship with mortality and virus susceptibility. Bioinformatic research can also help to better understand the interaction of TLRs with proteins and RNA of the SARS-CoV-2.

About the Authors

I. А. Sinyakin
Amur State Medical Academy
Russian Federation

Ivan A. Sinyakin, 3rd year Student of Medical Faculty

95 Gor'kogo Str., Blagoveshchensk, 675000



I. A. Andrievskaya
Far Eastern Scientific Center of Physiology and Pathology of Respiration
Russian Federation

Irina A. Andrievskaya, PhD, DSc (Biol.), Professor of RAS, Head of Laboratory of Mechanisms of Etiopathogenesis and Recovery Processes of the Respiratory System at Non-Specific Lung Diseases

22 Kalinina Str., Blagoveshchensk, 675000



N. A. Ishutina
Far Eastern Scientific Center of Physiology and Pathology of Respiration
Russian Federation

Nataliа A. Ishutina, PhD, DSc (Biol.), Leading Staff Scientist, Laboratory of Mechanisms of Etiopathogenesis and Recovery Processes of the Respiratory System at Non-Specific Lung Diseases

22 Kalinina Str., Blagoveshchensk, 675000



T. A. Batalova
Amur State Medical Academy
Russian Federation

Tatiana A. Batalova, PhD, DSc (Biol.), Associate Professor, Head of Department of Physiology and Pathophysiology

95 Gor'kogo Str., Blagoveshchensk, 675000



N. R. Grigor'ev
Amur State Medical Academy
Russian Federation

Nikolay R. Grigor'ev, PhD, DSc (Med.), Professor, Professor of Department of Physiology and Pathophysiology

95 Gor'kogo Str., Blagoveshchensk, 675000



References

1. Hanaei S., Rezaei N. COVID-19: Developing from an Outbreak to A Pandemic // Arch. Med. Res. 2020. Vol.51, №6. P.582–584. https://doi.org/10.1016/j.arcmed.2020.04.021

2. Birra D., Benucci M., Landolfi L., Merchionda A., Loi G., Amato P., Licata G., Quartuccio L., Triggiani M., Moscato P. COVID 19: a clue from innate immunity // Immunol. Res. 2020. Vol.68, №3. P.161–168. https://doi.org/10.1007/s12026-020-09137-5

3. Debnath M., Banerjee M., Berk M. Genetic gateways to COVID-19 infection: Implications for risk, severity, and outcomes // FASEB J. 2020. Vol.34, №7. P.8787–8795. https://doi.org/10.1096/fj.202001115R

4. Lester S.N., Li K. Toll-like receptors in antiviral innate immunity // J. Mol. Biol. 2014. Vol.426, №6. Р.1246–1264. https://doi.org/10.1016/j.jmb.2013.11.024

5. Tian S., Hu W., Niu L., Liu H., Xu H., Xiao SY. Pulmonary Pathology of Early-Phase 2019 Novel Coronavirus (COVID-19) Pneumonia in Two Patients With Lung Cancer // J. Thorac. Oncol. 2020. Vol.15, №5. Р.700–704. https://doi.org/10.1016/j.jtho.2020.02.010

6. Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C., Liu S., Zhao P., Liu H., Zhu L., Tai Y., Bai C., Gao T., Song J., Xia P., Dong J., Zhao J., & Wang F.S. Pathological findings of COVID-19 associated with acute respiratory distress syndrome // The Lancet Respir. Med. 2020. Vol.8, №4. Р.420–422. https://doi.org/10.1016/S2213-2600(20)30076-X

7. Geng Y.J., Wei Z.Y., Qian H.Y., Huang J., Lodato R., Castriotta R.J. Pathophysiological characteristics and therapeutic approaches for pulmonary injury and cardiovascular complications of coronavirus disease 2019 // Cardiovasc. Pathol. 2020. Vol.47. Article number: 107228. https://doi.org/10.1016/j.carpath.2020.107228

8. Su H., Yang M., Wan C., Yi L.X., Tang F., Zhu H.Y., Yi F., Yang H.C., Fogo A.B., Nie X., Zhang C. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China // Kidney Int. 2020. Vol.98, №1. Р.219–227. https://doi.org/10.1016/j.kint.2020.04.003

9. Batlle D., Soler M.J., Sparks M.A., Hiremath S., South A.M., Welling P.A., Swaminathan S. Acute kidney injury in COVID-19: emerging evidence of a distinct pathophysiology // J. Am. Soc. Nephrol. 2020, Vol.31, №7. Р.1380–1383. https://doi.org/10.1681/ASN.2020040419

10. Gutiérrez-Ortiz C., Méndez-Guerrero A., Rodrigo-Rey S., San Pedro-Murillo E., Bermejo-Guerrero L., GordoMañas R., de Aragón-Gómez F., Benito-León J. Miller Fisher syndrome and polyneuritis cranialis in COVID-19 // Neurology. 2020. Vol.95, №5. Р.601–605. https://doi.org/10.1212/WNL.0000000000009619

11. Zhao H., Shen D., Zhou H., Liu J., Chen S. Guillain-Barré syndrome associated with SARS-CoV-2 infection: causality or coincidence? // Lancet Neurol. 2020. Vol.19, №5. Р.383–384. https://doi.org/10.1016/S1474-4422(20)30109-5

12. Al Saiegh F., Ghosh R., Leibold A., Avery M.B., Schmidt R.F., Theofanis T., Mouchtouris N., Philipp L., Peiper S.C., Wang Z.X., Rincon F., Tjoumakaris S.I., Jabbour P., Rosenwasser R.H., Gooch M.R. Status of SARS-CoV-2 in cerebrospinal fluid of patients with COVID-19 and stroke // J. Neurol. Neurosurg. Psychiatry. 2020. Vol.91, №8. Р.846–848. https://doi.org/10.1136/jnnp-2020-323522

13. He X., Qian Y., Li Z., Fan E.K., Li Y., Wu L., Billiar T.R., Wilson M.A., Shi X., Fan J. TLR4-Upregulated IL-1β and IL-1RI Promote Alveolar Macrophage Pyroptosis and Lung Inflammation through an Autocrine Mechanism // Sci. Rep. 2016. Vol.6. Article number: 31663. https://doi.org/10.1038/srep31663

14. Mason R.J. Thoughts on the alveolar phase of COVID-19 // Am. J. Physiol. Lung Cell. Mol. Physiol. 2020. Vol.319, №1. Р.115–120. https://doi.org/10.1152/ajplung.00126.2020

15. de Rivero Vaccari J.C., Dietrich W.D., Keane R.W., de Rivero Vaccari J.P. The Inflammasome in Times of COVID19 // Front. Immunol. 2020. Vol.8, №11. Article number: 583373. https://doi.org/10.3389/fimmu.2020.583373

16. Khanmohammadi S., Rezaei N. Role of Toll-like receptors in the pathogenesis of COVID-19 // J. Med. Virol. 2021. Vol.93, №5. Р.2735–2739. https://doi.org/10.1002/jmv.26826

17. Lotfi M., Rezaei N. SARS-CoV-2: A comprehensive review from pathogenicity of the virus to clinical consequences // J. Med. Virol. 2020. Vol.92, №10. Р.1864–1874. https://doi.org/10.1002/jmv.26123

18. Alnefaie A., Albogami S. Current approaches used in treating COVID-19 from a molecular mechanisms and immune response perspective // Saudi Pharm. J. 2020. Vol.28, №11. Р.1333–1352. https://doi.org/10.1016/j.jsps.2020.08.024

19. Saghazadeh A., Rezaei N. Implications of Toll-like receptors in Ebola infection // Expert Opin. Ther. Targets. 2017. Vol.21, №4. Р.415–425. https://doi.org/10.1080/14728222.2017.1299128

20. Florindo H.F., Kleiner R., Vaskovich-Koubi D., Acúrcio R.C., Carreira B., Yeini E., Tiram G., Liubomirski Y., Satchi-Fainaro R. Immune-mediated approaches against COVID-19 // Nat. Nanotechnol. 2020. Vol.15, №8. Р.630–645. https://doi.org/10.1038/s41565-020-0732-3

21. Conti P., Ronconi G., Caraffa A., Gallenga C.E., Ross R., Frydas I., Kritas S.K. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): anti-inflammatory strategies // J. Biol. Regul. Homeost. Agents. 2020. Vol.34, №2. Р.327–331 https://doi.org/10.23812/CONTI-E

22. Patra R., Chandra Das N., Mukherjee S. Targeting human TLRs to combat COVID-19: A solution? // J. Med. Virol. 2021. Vol.93, №2. Р.615–617. https://doi.org/10.1002/jmv.26387

23. Totura A.L., Whitmore A., Agnihothram S., Schäfer A., Katze M.G., Heise M.T., Baric R.S. Toll-Like Receptor 3 Signaling via TRIF Contributes to a Protective Innate Immune Response to Severe Acute Respiratory Syndrome Coronavirus Infection // mBio. 2015. Vol.26, №6. e00638-15. https://doi.org/10.1128/mBio.00638-15

24. Cicco S., Cicco G., Racanelli V., Vacca A. Neutrophil Extracellular Traps (NETs) and Damage-Associated Molecular Patterns (DAMPs): Two Potential Targets for COVID-19 Treatment // Mediators Inflamm. 2020. Vol.2020. Article ID 7527953. https://doi.org/10.1155/2020/7527953

25. Khadke S., Ahmed N., Ahmed N., Ratts R., Raju S., Gallogly M., de Lima M., Sohail M.R. Harnessing the immune system to overcome cytokine storm and reduce viral load in COVID-19: a review of the phases of illness and therapeutic agents // Virol. J. 2020. Vol.17, №1. Article number: 154. https://doi.org/10.1186/s12985-020-01415-w

26. Sohn K.M., Lee S.G., Kim H.J., Cheon S., Jeong H., Lee J., Kim I.S., Silwal P., Kim Y.J., Paik S., Chung C., Park C., Kim Y.S., Jo E.K. COVID-19 Patients Upregulate Toll-like Receptor 4-mediated Inflammatory Signaling That Mimics Bacterial Sepsis // J. Korean Med. Sci. 2020. Vol.35, №38. Article number: e343. https://doi.org/10.3346/jkms.2020.35.e343

27. Proud P.C., Tsitoura D., Watson R.J., Chua B.Y., Aram M.J., Bewley K.R., Cavell B.E., Cobb R., Dowall S., Fotheringham S.A., Ho CM.K., Lucas V., Ngabo D., Rayner E., Ryan K.A., Slack G.S., Thomas S., Wand N.I., Yeates P., Demaison C., Zeng W., Holmes I., Jackson D.C., Bartlett N.W., Mercuri F., Carroll M.W. Prophylactic intranasal administration of a TLR2/6 agonist reduces upper respiratory tract viral shedding in a SARS-CoV-2 challenge ferret model // EBioMedicine. 2021. Vol.63. Article number: 103153. https://doi.org/10.1016/j.ebiom.2020.103153

28. de Groot N.G., Bontrop R.E. COVID-19 pandemic: is a gender-defined dosage effect responsible for the high mortality rate among males? // Immunogenetics. 2020. Vol.72, №5. Р.275–277. https://doi.org/10.1007/s00251-020-01165-7

29. Yazdanpanah F., Hamblin M.R., Rezaei N. The immune system and COVID-19: Friend or foe? // Life Sci. 2020. Vol.256. Article number: 117900. https://doi.org/10.1016/j.lfs.2020.117900

30. Choudhury A., Mukherjee S. In silico studies on the comparative characterization of the interactions of SARSCoV-2 spike glycoprotein with ACE-2 receptor homologs and human TLRs // J. Med. Virol. 2020. Vol.92, №10. Р.2105– 2113. https://doi.org/10.1002/jmv.25987

31. Autilio C., Echaide M., Cruz A., García-Mouton C., Hidalgo A., Da Silva E., De Luca D., Sørli J.B., Pérez-Gil J. Molecular and biophysical mechanisms behind the enhancement of lung surfactant function during controlled therapeutic hypothermia // Sci. Rep. 2021. Vol.11, №1. Article number: 728. https://doi.org/10.1038/s41598-020-79025-3

32. Słońska A., Cymerys J., Bańbura M.W. Mechanisms of endocytosis utilized by viruses during infection // Postepy Hig. Med. Dosw. (Online). 2016. Vol.70, №1. Р.572–580. https://doi.org/10.5604/17322693.1203721

33. Wu Y., Xu X., Chen Z. Nervous system involvement after infection with COVID-19 and other coronaviruses // Brain Behav. Immun. 2020. Vol.87, №1. Р.18–22. https://doi.org/10.1016/j.bbi.2020.03.031

34. Zheng M., Karki R., Williams E.P. TLR2 senses the SARS-CoV-2 envelope protein to produce inflammatory cytokines // Nat. Immunol. 2021. Vol.22, №7. Р.829–838. https://doi.org/10.1038/s41590-021-00937-x


Review

For citations:


Sinyakin I.А., Andrievskaya I.A., Ishutina N.A., Batalova T.A., Grigor'ev N.R. Role of Toll-like receptors in COVID-19 pathogenesis. Bulletin Physiology and Pathology of Respiration. 2021;(82):107-115. (In Russ.) https://doi.org/10.36604/1998-5029-2021-82-107-115

Views: 390


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-5029 (Print)