Preview

Bulletin Physiology and Pathology of Respiration

Advanced search

Features of inflammation in severe bronchial asthma

https://doi.org/10.36604/1998-5029-2025-98-75-85

Abstract

Aim. To evaluate the characteristics of inflammation in severe bronchial asthma in real-world clinical practice, using the city of Krasnoyarsk as an example.
Materials and methods. Eighty patients diagnosed with severe bronchial asthma were examined. Prior to enrollment, all patients had been receiving standard maintenance therapy corresponding to steps 4–5 according to the Russian federal clinical guidelines and exhibited uncontrolled asthma. The general clinical assessment included patient interviews, physical examination, and review of outpatient medical records and hospital discharge summaries. Pulmonary function tests were performed using a whole-body plethysmograph (Erich Eger, Germany). Serum levels of total IgE, interleukins (IL)-5, IL-4, IL-10, IL-9, IL-13, transforming growth factor beta (TGF-β), periostin, cathepsin S, and dipeptidyl peptidase-4 (DPP-4) were measured by solid-phase enzyme-linked immunosorbent assay (ELISA). Fractional exhaled nitric oxide (FeNO) was assessed using the portable analyzer «NObreath» (Bedfont Scientific Limited, UK).
Results. Fixed airflow obstruction (FAO) was present in 58% of patients with severe bronchial asthma. Evaluation of T2 inflammation biomarkers revealed that one marker was elevated in 15 (18.7%) patients, two markers in 34 (42.5%), and three markers in 31 (38.7%) patients. In one-third of patients with severe asthma, three T2 biomarkers were simultaneously elevated, which was associated with significantly higher peripheral blood eosinophil counts, total IgE levels, and FeNO values—although no corresponding increase in cytokine levels was observed. Compared to healthy controls, patients with severe asthma demonstrated significantly elevated concentrations of T2-associated cytokines (IL-4, IL-5, IL-13), as well as cathepsin S, periostin, and TGF-β. Notably, plasma periostin levels were significantly higher in patients with severe asthma and FAO compared to both those without FAO and healthy controls (p = 0.034). Correlation analysis revealed moderate-strength associations between cathepsin S, TGF-β, and DPP-4 levels and T2 cytokines. Furthermore, cathepsin S, TGF-β, DPP-4, and periostin were interrelated and correlated with lung function parameters.
Conclusion. Activation of three T2 inflammatory signaling pathways is associated with markedly elevated FeNO, blood eosinophils, and total IgE. A significant increase in plasma periostin levels in patients with severe asthma and fixed airflow obstruction suggests its potential role in T2 inflammation and airway remodeling.

About the Authors

A. Yu. Kraposhina
Federal State Budgetary Educational Institution of Higher Education «Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University» of the Ministry of Healthcare of the Russian Federation; Regional State Budgetary Healthcare Institution «Regional Clinical Hospital»
Russian Federation

Angelina Yu. Kraposhina, MD, PhD (Med.), Associate Professor, Associate Professor of Department of Hospital Therapy and Immunology with a Postgraduate Education Course; Pulmonologist of Department of Pulmonology

1 Partizana Zheleznyaka Str., Krasnoyarsk, 660022

3 Partizana Zheleznyaka Str., Krasnoyarsk, 660022



I. V. Demko
Federal State Budgetary Educational Institution of Higher Education «Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University» of the Ministry of Healthcare of the Russian Federation; Regional State Budgetary Healthcare Institution «Regional Clinical Hospital»
Russian Federation

Irina V. Demko, MD, PhD, DSc (Med.), Professor, Head of Department of Hospital Therapy and Immunology with Postgraduate Education Course; Head of Pulmonary Allergology
Сenter

1 Partizana Zheleznyaka Str., Krasnoyarsk, 660022

3 Partizana Zheleznyaka Str., Krasnoyarsk, 660022



E. A. Sobko
Federal State Budgetary Educational Institution of Higher Education «Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University» of the Ministry of Healthcare of the Russian Federation; Regional State Budgetary Healthcare Institution «Regional Clinical Hospital»
Russian Federation

Elena A. Sobko, MD, PhD, DSc (Med.), Professor of the Department of Hospital Therapy and Immunology with a Postgraduate Course; Head of the Allergology Department

1 Partizana Zheleznyaka Str., Krasnoyarsk, 660022

3 Partizana Zheleznyaka Str., Krasnoyarsk, 660022



References

1. Soriano J.B., Abajobir A.A., Abate K.H., Abera S.F., Agrawal A., Ahmed M.B., Aichour A.N., Aichour I., Aichour M.T.E., Alam K., Alam N., Alkaabi J.M., Al-Maskari F., Alvis-Guzman N., Amberbir A., Amoako Y.A., Ansha M.G., Antó J.M., Asayesh H., Atey T.M., Avokpaho E.F.G.A., Barac A., Basu S., Bedi N., Bensenor I.M., Berhane A., Beyene A.S., Bhutta Z.A., Biryukov S., Boneya D.J., Brauer M., Carpenter D.O., Casey D., Christopher D.J., Dandona L., Dandona R., Dharmaratne S.D., Do H.P., Fischer F., Geleto A., Ghoshal A.G., Gillum R.F., Ginawi I.A.M., Gupta V., Hay S.I., Hedayati M.T., Horita N., Hosgood H.D., Jakovljevic M.B., James S.L., Jonas J.B., Kasaeian A., Khader Y.S., Khalil I.A., Khan E.A., Khang Y.-H., Khubchandani J., Knibbs L.D., Kosen S., Koul P.A., Kumar G.A., Leshargie C.T., Liang X., El Razek H.M.A., Majeed A., Malta D.C., Manhertz T., Marquez N., Mehari A., Mensah G.A., Miller T.R., Mohammad K.A., Mohammed K.E., Mohammed S., Mokdad A.H., Naghavi M., Nguyen C.T., Nguyen G., Nguyen Q.L., Nguyen T.H., Ningrum D.N.A., Nong V.M., Obi J.I., Odeyemi Y.E., Ogbo F.A., Oren E., PA M., Park E.-K., Patton G.C., Paulson K., Qorbani M., Quansah R., Rafay A., Rahman M.H.U., Rai R.K., Rawaf S., Reinig N., Safiri S., Sarmiento-Suarez R., Sartorius B., Savic M., Sawhney M., Shigematsu M., Smith M., Tadese F., Thurston G.D., Topor-Madry R., Tran B.X., Ukwaja K.N., van Boven J.F.M., Vlassov V.V., Vollset S.E., Wan X., Werdecker A., Hanson S.W., Yano Y., Yimam H.H., Yonemoto N., Yu C., Zaidi Z., Zaki M.E.S., Murray C.J.L., Vos T. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990– 2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Respir. Med. 2017; 5(9):691–706. https://doi.org/10.1016/S2213-2600(17)30293-X

2. Global Initiative for Asthma (GINA). Global strategy for asthma management and prevention (Update 2024). Available at: https://ginasthma.org/wp-content/uploads/2024/05/GINA-2024-Main-Report-WMS-1.pdf

3. Quint J.K. Disentangling difficult-to-treat from severe asthma: What is the true prevalence? Respirology 2024; 29(8):649–650. https://doi.org/10.1111/resp.14762650

4. Ribas D.C., Díaz C.T., Aparicio B.M., Moragón M.E., Conejero B.D., Herrero S.M.G.; REDES Study Group. Real world effectiveness and safety of mepolizumab in a multicentric Spanish cohort of asthma patients stratified by eosinophils: the REDES Study. Drugs 2021; 81(15):1763–1774. https://doi.org/10.1007/s40265-021-01597-9. Erratum in: Drugs 2021;81(16):1949-1951. doi: 10.1007/s40265-021-01622-x

5. Menzies-Gow A., Hoyte F.L., Price D.B., Cohen D., Barker P., Kreindler J., Jison M., Brooks C.L., Papeleu P., Katial R. Clinical remission in severe asthma: a pooled post hoc analysis of the patient journey with benralizumab. Adv. Ther. 2022; 39(5):2065–2084. https://doi.org/10.1007/s12325-022-02098-1

6. Menzies-Gow A., Bafadhel M., Busse W.W., Casale T.B., Kocks J.W.H., Pavord I.D., Szefler S.J., Woodruff P.G., de Giorgio-Miller A., Trudo F., Fageras M., Ambrose C.S. An expert consensus framework for asthma remission as a treatment goal. J. Allergy Clin. Immunol. 2020; 145(3):757–765. https://doi.org/10.1016/j.jaci.2019.12.006

7. Thomas D., McDonald V.M., Pavord I.D., Gibson P.G. Asthma remission: what is it and how can it be achieved? Eur. Respir. J. 2022; 60(5):2102583. https://doi.org/10.1183/13993003.02583-2021

8. Maspero J, Adir Y, Al-Ahmad M, Celis-Preciado C.A., Colodenco F.D., Giavina-Bianchi P., Lababidi H., Ledanois O., Mahoub B., Perng D.-W., Vazquez J.C., Yorgancioglu A. Type 2 inflammation in asthma and other airway diseases. ERJ Open Res. 2022; 8(3):00576-2021. https://doi.org/10.1183/23120541.00576-2021

9. Potapova N.L., Gajmolenko I.N. [Biomarkers of airway remodeling in asthma]. Doctor.Ru 2020; 19(11):27–31 (in Russian). https://doi.org/10.31550/1727-2378-2020-19-11-27-31

10. Pelaia G., Vatrella A., Maselli R. Airway remodelling in asthma. In: Asthma: Targeted biological therapie. Switzerland: Springer Cham; 2017:17–25. https://doi.org/10.1007/978-3-319-46007-9_3

11. Salter B., Pray C., Radford K., Martin J.G., Nair P. Regulation of human airway smooth muscle cell migration and relevance to asthma. Respir. Res. 2017; 18(1):156. https://doi.org/10.1186/s12931-017-0640-8

12. Nair P., Wenzel S., Rabe K.F., Bourdin A., Lugogo N.L., Kuna P., Barker P., Sproule S., Ponnarambil S., Goldman M. Oral glucocorticoid-sparing effect of benralizumab in severe asthma. NEJM 2017; 376(25):2448–2458 https://doi.org/10.1056/NEJMoa1703501

13. Pain M., Bermudez O., Lacoste P., Royer P.J., Botturi K., Tissot A., Brouard S., Eickelberg O., Magnan A. Tissue remodelling in chronic bronchial diseases: from the epithelial to mesenchymal phenotype. Eur. Respir. Rev. 2014; 23:118–130. https://doi.org/10.1183/09059180.00004413

14. Sobotič B., Vizovišek M., Vidmar R., Van Damme P., Gocheva V., Joyce J.A., Gevaert K., Turk V., Turk B., Fonović M. Proteomic identification of cysteine cathepsin substrates shed from the surface of cancer cells. Mol. Cell. Proteomics 2015; 14(8):2213–2228. https://doi.org/10.1074/mcp.M114.044628

15. Saito A., Horie M., Nagase T. TGF-β signaling in lung health and disease. Int. J. Mol. Sci. 2018; 19(8):2460. https://doi.org/10.3390/ijms19082460

16. Upham J.W., Jurak L.M. How do biologicals and other novel therapies effect clinically used biomarkers in severe asthma? Clin. Exp. Allergy 2020; 50(9):994–1006. https://doi.org/10.1111/cea.13694

17. Kameneva M.Yu., Cherniak A.V., Aisanov Z.R., Avdeev S.N., Babak S.L., Belevskiy A.S., Beresten N.F., Kalmanova E.N., Malyavin A.G., Perelman Ju.M., Prikhodko A.G., Struchkov P.V., Chikina S.Yu., Chushkin M.I. [Spirometry: national guidelines for the testing and interpretation of results]. Pulmonologiya 2023; 33(3):307–340 (in Russian). https://doi.org/10.18093/0869-0189-2023-33-3-307-340

18. Bose S., Bime C., Henderson R.J., Pharm K.V.B., Castro M., DiMango E., Hanania N.A., Holbrook J.T., Irvin C.G., Kraft M., Peters S.P., Reibman J., Sugar E.A., Sumino K., Wise R.A., Rogers L. Biomarkers of type 2 airway inflammation as predictors of loss of asthma control during step-down therapy for well-controlled disease: the long-acting beta-agonist step-down study (LASST). JACI: In Practice 2020; 8(10):3474–3481. https://doi.org/10.1016/j.jaip.2020.06.067

19. Medrek S.K., Parulekar A.D., Hanania N.A. Predictive biomarkers for asthma therapy. Curr. Allergy Asthma Rep. 2017; 17(69):69. https://doi.org/10.1007/s11882-017-0739-5.

20. Osei E.T., Booth S., Hackett T.-L. What have in vitro co-culture models taught us about the contribution of epithelial-mesenchymal interactions to airway inflammation and remodeling in asthma? Cells 2020; 9(7):1694. https://doi.org/10.3390/cells9071694

21. Brown R., Nath S., Lora A., Samaha G., Elgama Z., Kaiser R., Taggart C., Weldon S., Geraghty P. Cathepsin S: investigating an old player in lung disease pathogenesis, comorbidities, and potential therapeutics. Respir. Res. 2020; 21:111. https://doi.org/10.1186/s12931-020-01381-5

22. Shiobara T., Chibana K., Watanabe T., Arai R., Horigane Y., Nakamura Y., Hayashi Y., Shimizu Y., Takemasa A., Ishii Y. Dipeptidyl peptidase-4 is highly expressed in bronchial epithelial cells of untreated asthma and it increases cell proliferation along with fibronectin production in airway constitutive cells. Respir. Res. 2016; 17:28. https://doi.org/10.1186/s12931-016-0342-7

23. Kuznecov V.D., Kozlova Ja.I., Frolova E.V., Uchevatkina A.E., Filippova L.V., Aak O.V., Vasil'eva N.V. [Periostin as a marker of eosinophilic inflammation in patients with asthma and chronic obstructive pulmonary disease]. Vestnik Severo-Zapadnogo gosudarstvennogo meditsinskogo universiteta im. I.I.Mechnikova = Herald of North-Western State Medical University named after I.I.Mechnikov 2024; 16(2):49–60 (in Russian). https://doi.org/10.17816/mechnikov625938

24. Shakhova N.V. [Periostin as a biomarker of bronchial asthma]. Voprosy sovremennoi pediatrii = Current Pediatrics (Moscow) 2019; 18(5):339–345 (in Russian). 2019; 18(5):339–345 (in Russian). https://doi.org/10.15690/vsp.v18i5.2056

25. Makinde T., Murphy R.F., Agrawal D.K. The regulatory role of TGF-beta in airway remodeling in asthma. Immunol. Cell Biology 2007; 85(5):348–356. https://doi.org/10.1038/sj.icb.7100044

26. Fahy J.V. Type 2 inflammation in asthma–present in most, absent in many. Nat. Rev. Immunol. 2015; 15(1):57–65. https://doi.org/10.1038/nri3786

27. Matsumoto H. Roles of periostin in asthma. Adv. Exp. Med. Biol. 2019; 1132:145–159. https://doi.org/10.1007/978-981-13-6657-4_15

28. Sonnenberg-Riethmacher E., Miehe M., Riethmacher D. Periostin in allergy and inflammation. Front. Immunol. 2021; 12:722170. https://doi.org/10.3389/fimmu.2021.722170


Review

For citations:


Kraposhina A.Yu., Demko I.V., Sobko E.A. Features of inflammation in severe bronchial asthma. Bulletin Physiology and Pathology of Respiration. 2025;(98):75-85. (In Russ.) https://doi.org/10.36604/1998-5029-2025-98-75-85

Views: 12


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-5029 (Print)